mariadb/sql/opt_subselect.h

417 lines
14 KiB
C
Raw Normal View History

/*
Copyright (c) 2010, 2019, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
2010-04-25 12:23:52 +04:00
/*
Semi-join subquery optimization code definitions
*/
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
int check_and_do_in_subquery_rewrites(JOIN *join);
bool convert_join_subqueries_to_semijoins(JOIN *join);
int pull_out_semijoin_tables(JOIN *join);
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map);
MDEV-12387 Push conditions into materialized subqueries The logic and the implementation scheme are similar with the MDEV-9197 Pushdown conditions into non-mergeable views/derived tables How the push down is made on the example: select * from t1 where a>3 and b>10 and (a,b) in (select x,max(y) from t2 group by x); --> select * from t1 where a>3 and b>10 and (a,b) in (select x,max(y) from t2 where x>3 group by x having max(y)>10); The implementation scheme: 1. Search for the condition cond that depends only on the fields from the left part of the IN subquery (left_part) 2. Find fields F_group in the select of the right part of the IN subquery (right_part) that are used in the GROUP BY 3. Extract from the cond condition cond_where that depends only on the fields from the left_part that stay at the same places in the left_part (have the same indexes) as the F_group fields in the projection of the right_part 4. Transform cond_where so it can be pushed into the WHERE clause of the right_part and delete cond_where from the cond 5. Transform cond so it can be pushed into the HAVING clause of the right_part The optimization is made in the Item_in_subselect::pushdown_cond_for_in_subquery() and is controlled by the variable condition_pushdown_for_subquery. New test file in_subq_cond_pushdown.test is created. There are also some changes made for setup_jtbm_semi_joins(). Now it is decomposed into the 2 procedures: setup_degenerate_jtbm_semi_joins() that is called before optimize_cond() for cond and setup_jtbm_semi_joins() that is called after optimize_cond(). New setup_jtbm_semi_joins() is made in the way so that the result of its work is the same as if it was called before optimize_cond(). The code that is common for pushdown into materialized derived and into materialized IN subqueries is factored out into pushdown_cond_for_derived(), Item_in_subselect::pushdown_cond_for_in_subquery() and st_select_lex::pushdown_cond_into_where_clause().
2018-05-15 23:45:59 +02:00
bool setup_degenerate_jtbm_semi_joins(JOIN *join,
List<TABLE_LIST> *join_list,
List<Item> &eq_list);
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
List<Item> &eq_list);
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list);
// used by Loose_scan_opt
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
table_map remaining_tables);
/*
This is a class for considering possible loose index scan optimizations.
It's usage pattern is as follows:
best_access_path()
{
Loose_scan_opt opt;
opt.init()
for each index we can do ref access with
{
opt.next_ref_key();
for each keyuse
opt.add_keyuse();
opt.check_ref_access();
}
if (some criteria for range scans)
opt.check_range_access();
opt.get_best_option();
}
*/
class Loose_scan_opt
{
/* All methods must check this before doing anything else */
bool try_loosescan;
/*
If we consider (oe1, .. oeN) IN (SELECT ie1, .. ieN) then ieK=oeK is
called sj-equality. If oeK depends only on preceding tables then such
equality is called 'bound'.
*/
ulonglong bound_sj_equalities;
/* Accumulated properties of ref access we're now considering: */
ulonglong handled_sj_equalities;
key_part_map loose_scan_keyparts;
uint max_loose_keypart;
bool part1_conds_met;
/*
Use of quick select is a special case. Some of its properties:
*/
uint quick_uses_applicable_index;
uint quick_max_loose_keypart;
/* Best loose scan method so far */
uint best_loose_scan_key;
double best_loose_scan_cost;
double best_loose_scan_records;
KEYUSE *best_loose_scan_start_key;
uint best_max_loose_keypart;
table_map best_ref_depend_map;
public:
Loose_scan_opt():
try_loosescan(false),
bound_sj_equalities(0),
quick_uses_applicable_index(0),
quick_max_loose_keypart(0),
best_loose_scan_key(0),
best_loose_scan_cost(0),
best_loose_scan_records(0),
best_loose_scan_start_key(NULL),
2019-09-27 15:56:15 +03:00
best_max_loose_keypart(0),
best_ref_depend_map(0)
{
}
void init(JOIN *join, JOIN_TAB *s, table_map remaining_tables)
{
/*
Discover the bound equalities. We need to do this if
1. The next table is an SJ-inner table, and
2. It is the first table from that semijoin, and
3. We're not within a semi-join range (i.e. all semi-joins either have
all or none of their tables in join_table_map), except
s->emb_sj_nest (which we've just entered, see #2).
4. All non-IN-equality correlation references from this sj-nest are
bound
5. But some of the IN-equalities aren't (so this can't be handled by
FirstMatch strategy)
*/
best_loose_scan_cost= DBL_MAX;
if (!join->emb_sjm_nest && s->emb_sj_nest && // (1)
s->emb_sj_nest->sj_in_exprs < 64 &&
((remaining_tables & s->emb_sj_nest->sj_inner_tables) == // (2)
s->emb_sj_nest->sj_inner_tables) && // (2)
join->cur_sj_inner_tables == 0 && // (3)
!(remaining_tables &
s->emb_sj_nest->nested_join->sj_corr_tables) && // (4)
remaining_tables & s->emb_sj_nest->nested_join->sj_depends_on &&// (5)
optimizer_flag(join->thd, OPTIMIZER_SWITCH_LOOSE_SCAN))
{
/* This table is an LooseScan scan candidate */
bound_sj_equalities= get_bound_sj_equalities(s->emb_sj_nest,
remaining_tables);
try_loosescan= TRUE;
DBUG_PRINT("info", ("Will try LooseScan scan, bound_map=%llx",
(longlong)bound_sj_equalities));
}
}
void next_ref_key()
{
handled_sj_equalities=0;
loose_scan_keyparts= 0;
max_loose_keypart= 0;
part1_conds_met= FALSE;
}
void add_keyuse(table_map remaining_tables, KEYUSE *keyuse)
{
if (try_loosescan && keyuse->sj_pred_no != UINT_MAX &&
(keyuse->table->file->index_flags(keyuse->key, 0, 1 ) & HA_READ_ORDER))
{
if (!(remaining_tables & keyuse->used_tables))
{
/*
This allows to use equality propagation to infer that some
sj-equalities are bound.
*/
bound_sj_equalities |= 1ULL << keyuse->sj_pred_no;
}
else
{
handled_sj_equalities |= 1ULL << keyuse->sj_pred_no;
loose_scan_keyparts |= ((key_part_map)1) << keyuse->keypart;
set_if_bigger(max_loose_keypart, keyuse->keypart);
}
}
}
bool have_a_case() { return MY_TEST(handled_sj_equalities); }
void check_ref_access_part1(JOIN_TAB *s, uint key, KEYUSE *start_key,
table_map found_part)
{
/*
Check if we can use LooseScan semi-join strategy. We can if
1. This is the right table at right location
2. All IN-equalities are either
- "bound", ie. the outer_expr part refers to the preceding tables
- "handled", ie. covered by the index we're considering
3. Index order allows to enumerate subquery's duplicate groups in
order. This happens when the index definition matches this
pattern:
(handled_col|bound_col)* (other_col|bound_col)
*/
if (try_loosescan && // (1)
2011-04-25 17:22:25 +02:00
(handled_sj_equalities | bound_sj_equalities) == // (2)
PREV_BITS(ulonglong, s->emb_sj_nest->sj_in_exprs) && // (2)
(PREV_BITS(key_part_map, max_loose_keypart+1) & // (3)
(found_part | loose_scan_keyparts)) == // (3)
PREV_BITS(key_part_map, max_loose_keypart+1) && // (3)
!key_uses_partial_cols(s->table->s, key))
{
if (s->quick && s->quick->index == key &&
s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
{
quick_uses_applicable_index= TRUE;
quick_max_loose_keypart= max_loose_keypart;
}
DBUG_PRINT("info", ("Can use LooseScan scan"));
if (found_part & 1)
{
/* Can use LooseScan on ref access if the first key part is bound */
part1_conds_met= TRUE;
}
/*
Check if this is a special case where there are no usable bound
IN-equalities, i.e. we have
outer_expr IN (SELECT innertbl.key FROM ...)
and outer_expr cannot be evaluated yet, so it's actually full
index scan and not a ref access.
We can do full index scan if it uses index-only.
*/
if (!(found_part & 1 ) && /* no usable ref access for 1st key part */
s->table->covering_keys.is_set(key))
{
part1_conds_met= TRUE;
DBUG_PRINT("info", ("Can use full index scan for LooseScan"));
/* Calculate the cost of complete loose index scan. */
double records= rows2double(s->table->file->stats.records);
/* The cost is entire index scan cost (divided by 2) */
double read_time= s->table->file->keyread_time(key, 1,
(ha_rows) records);
/*
Now find out how many different keys we will get (for now we
ignore the fact that we have "keypart_i=const" restriction for
some key components, that may make us think think that loose
scan will produce more distinct records than it actually will)
*/
ulong rpc;
if ((rpc= s->table->key_info[key].rec_per_key[max_loose_keypart]))
records= records / rpc;
// TODO: previous version also did /2
if (read_time < best_loose_scan_cost)
{
best_loose_scan_key= key;
best_loose_scan_cost= read_time;
best_loose_scan_records= records;
best_max_loose_keypart= max_loose_keypart;
best_loose_scan_start_key= start_key;
best_ref_depend_map= 0;
}
}
}
}
void check_ref_access_part2(uint key, KEYUSE *start_key, double records,
double read_time, table_map ref_depend_map_arg)
{
if (part1_conds_met && read_time < best_loose_scan_cost)
{
/* TODO use rec-per-key-based fanout calculations */
best_loose_scan_key= key;
best_loose_scan_cost= read_time;
best_loose_scan_records= records;
best_max_loose_keypart= max_loose_keypart;
best_loose_scan_start_key= start_key;
best_ref_depend_map= ref_depend_map_arg;
}
}
void check_range_access(JOIN *join, uint idx, QUICK_SELECT_I *quick)
{
/* TODO: this the right part restriction: */
if (quick_uses_applicable_index && idx == join->const_tables &&
quick->read_time < best_loose_scan_cost)
{
best_loose_scan_key= quick->index;
best_loose_scan_cost= quick->read_time;
/* this is ok because idx == join->const_tables */
best_loose_scan_records= rows2double(quick->records);
best_max_loose_keypart= quick_max_loose_keypart;
best_loose_scan_start_key= NULL;
best_ref_depend_map= 0;
}
}
void save_to_position(JOIN_TAB *tab, POSITION *pos)
{
pos->read_time= best_loose_scan_cost;
if (best_loose_scan_cost != DBL_MAX)
{
pos->records_read= best_loose_scan_records;
pos->key= best_loose_scan_start_key;
2013-03-11 07:44:24 -07:00
pos->cond_selectivity= 1.0;
pos->loosescan_picker.loosescan_key= best_loose_scan_key;
pos->loosescan_picker.loosescan_parts= best_max_loose_keypart + 1;
pos->use_join_buffer= FALSE;
pos->table= tab;
pos->range_rowid_filter_info= tab->range_rowid_filter_info;
pos->ref_depend_map= best_ref_depend_map;
DBUG_PRINT("info", ("Produced a LooseScan plan, key %s, %s",
2017-06-18 12:28:40 +03:00
tab->table->key_info[best_loose_scan_key].name.str,
best_loose_scan_start_key? "(ref access)":
"(range/index access)"));
}
}
};
void advance_sj_state(JOIN *join, table_map remaining_tables, uint idx,
double *current_record_count, double *current_read_time,
POSITION *loose_scan_pos);
void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab, uint idx);
void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab);
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab);
uint get_number_of_tables_at_top_level(JOIN *join);
/*
Temporary table used by semi-join DuplicateElimination strategy
This consists of the temptable itself and data needed to put records
into it. The table's DDL is as follows:
CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col));
where the primary key can be replaced with unique constraint if n exceeds
the limit (as it is always done for query execution-time temptables).
The record value is a concatenation of rowids of tables from the join we're
executing. If a join table is on the inner side of the outer join, we
assume that its rowid can be NULL and provide means to store this rowid in
the tuple.
*/
class SJ_TMP_TABLE : public Sql_alloc
{
public:
/*
Array of pointers to tables whose rowids compose the temporary table
record.
*/
class TAB
{
public:
JOIN_TAB *join_tab;
uint rowid_offset;
ushort null_byte;
uchar null_bit;
};
TAB *tabs;
TAB *tabs_end;
/*
is_degenerate==TRUE means this is a special case where the temptable record
has zero length (and presence of a unique key means that the temptable can
have either 0 or 1 records).
In this case we don't create the physical temptable but instead record
its state in SJ_TMP_TABLE::have_degenerate_row.
*/
bool is_degenerate;
/*
When is_degenerate==TRUE: the contents of the table (whether it has the
record or not).
*/
bool have_degenerate_row;
/* table record parameters */
uint null_bits;
uint null_bytes;
uint rowid_len;
/* The temporary table itself (NULL means not created yet) */
TABLE *tmp_table;
/*
These are the members we got from temptable creation code. We'll need
them if we'll need to convert table from HEAP to MyISAM/Maria.
*/
fixes for test failures and small collateral changes mysql-test/lib/My/Test.pm: somehow with "print" we get truncated writes sometimes mysql-test/suite/perfschema/r/digest_table_full.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/dml_handler.result: host table is not ported over yet mysql-test/suite/perfschema/r/information_schema.result: host table is not ported over yet mysql-test/suite/perfschema/r/nesting.result: this differs, because we don't rewrite general log queries, and multi-statement packets are logged as a one entry. this result file is identical to what mysql-5.6.5 produces with the --log-raw option. mysql-test/suite/perfschema/r/relaylog.result: MariaDB modifies the binlog index file directly, while MySQL 5.6 has a feature "crash-safe binlog index" and modifies a special "crash-safe" shadow copy of the index file and then moves it over. That's why this test shows "NONE" index file writes in MySQL and "MANY" in MariaDB. mysql-test/suite/perfschema/r/server_init.result: MariaDB initializes the "manager" resources from the "manager" thread, and starts this thread only when --flush-time is not 0. MySQL 5.6 initializes "manager" resources unconditionally on server startup. mysql-test/suite/perfschema/r/stage_mdl_global.result: this differs, because MariaDB disables query cache when query_cache_size=0. MySQL does not do that, and this causes useless mutex locks and waits. mysql-test/suite/perfschema/r/statement_digest.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/statement_digest_consumers.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/statement_digest_long_query.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/rpl/r/rpl_mixed_drop_create_temp_table.result: will be updated to match 5.6 when alfranio.correia@oracle.com-20110512172919-c1b5kmum4h52g0ni and anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y are merged mysql-test/suite/rpl/r/rpl_non_direct_mixed_mixing_engines.result: will be updated to match 5.6 when anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y is merged
2012-09-27 20:09:46 +02:00
TMP_ENGINE_COLUMNDEF *start_recinfo;
TMP_ENGINE_COLUMNDEF *recinfo;
SJ_TMP_TABLE *next_flush_table;
int sj_weedout_delete_rows();
int sj_weedout_check_row(THD *thd);
bool create_sj_weedout_tmp_table(THD *thd);
};
int setup_semijoin_loosescan(JOIN *join);
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
uint no_jbuf_after);
void destroy_sj_tmp_tables(JOIN *join);
int clear_sj_tmp_tables(JOIN *join);
int rewrite_to_index_subquery_engine(JOIN *join);
void get_delayed_table_estimates(TABLE *table,
ha_rows *out_rows,
double *scan_time,
double *startup_cost);
2010-04-25 12:23:52 +04:00
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab);