mariadb/include/sync0sync.ic

261 lines
7.1 KiB
Text
Raw Normal View History

2005-10-27 07:29:40 +00:00
/******************************************************
Mutex, the basic synchronization primitive
(c) 1995 Innobase Oy
Created 9/5/1995 Heikki Tuuri
*******************************************************/
#if defined(not_defined) && defined(__GNUC__) && defined(UNIV_INTEL_X86)
/* %z0: Use the size of operand %0 which in our case is *m to determine
instruction size, it should end up as xchgl. "1" in the input constraint,
says that "in" has to go in the same place as "out".*/
#define TAS(m, in, out) \
asm volatile ("xchg%z0 %2, %0" \
: "=g" (*(m)), "=r" (out) \
: "1" (in)) /* Note: "1" here refers to "=r" (out) */
#endif
2005-10-27 07:29:40 +00:00
/**********************************************************************
Sets the waiters field in a mutex. */
void
mutex_set_waiters(
/*==============*/
mutex_t* mutex, /* in: mutex */
ulint n); /* in: value to set */
2005-10-27 07:29:40 +00:00
/**********************************************************************
Reserves a mutex for the current thread. If the mutex is reserved, the
function spins a preset time (controlled by SYNC_SPIN_ROUNDS) waiting
for the mutex before suspending the thread. */
void
mutex_spin_wait(
/*============*/
mutex_t* mutex, /* in: pointer to mutex */
const char* file_name, /* in: file name where mutex
requested */
ulint line); /* in: line where requested */
2005-10-27 07:29:40 +00:00
#ifdef UNIV_SYNC_DEBUG
/**********************************************************************
Sets the debug information for a reserved mutex. */
void
mutex_set_debug_info(
/*=================*/
mutex_t* mutex, /* in: mutex */
const char* file_name, /* in: file where requested */
ulint line); /* in: line where requested */
#endif /* UNIV_SYNC_DEBUG */
/**********************************************************************
Releases the threads waiting in the primary wait array for this mutex. */
void
mutex_signal_object(
/*================*/
mutex_t* mutex); /* in: mutex */
/**********************************************************************
Performs an atomic test-and-set instruction to the lock_word field of a
mutex. */
UNIV_INLINE
ulint
mutex_test_and_set(
/*===============*/
/* out: the previous value of lock_word: 0 or
1 */
mutex_t* mutex) /* in: mutex */
{
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
ulint res;
ulint* lw; /* assembler code is used to ensure that
lock_word is loaded from memory */
ut_ad(mutex);
ut_ad(sizeof(ulint) == 4);
lw = &(mutex->lock_word);
__asm MOV ECX, lw
__asm MOV EDX, 1
__asm XCHG EDX, DWORD PTR [ECX]
__asm MOV res, EDX
/* The fence below would prevent this thread from
reading the data structure protected by the mutex
before the test-and-set operation is committed, but
the fence is apparently not needed:
In a posting to comp.arch newsgroup (August 10, 1997)
Andy Glew said that in P6 a LOCKed instruction like
XCHG establishes a fence with respect to memory reads
and writes and thus an explicit fence is not
needed. In P5 he seemed to agree with a previous
newsgroup poster that LOCKed instructions serialize
all instruction execution, and, consequently, also
memory operations. This is confirmed in Intel Software
Dev. Manual, Vol. 3. */
/* mutex_fence(); */
return(res);
2005-10-27 07:29:40 +00:00
#elif defined(not_defined) && defined(__GNUC__) && defined(UNIV_INTEL_X86)
ulint res;
TAS(&mutex->lock_word, 1, res);
2005-10-27 07:29:40 +00:00
return(res);
#else
ibool ret;
ret = os_fast_mutex_trylock(&(mutex->os_fast_mutex));
if (ret == 0) {
/* We check that os_fast_mutex_trylock does not leak
and allow race conditions */
ut_a(mutex->lock_word == 0);
mutex->lock_word = 1;
}
return(ret);
#endif
}
/**********************************************************************
Performs a reset instruction to the lock_word field of a mutex. This
instruction also serializes memory operations to the program order. */
UNIV_INLINE
void
mutex_reset_lock_word(
/*==================*/
mutex_t* mutex) /* in: mutex */
{
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
ulint* lw; /* assembler code is used to ensure that
lock_word is loaded from memory */
ut_ad(mutex);
lw = &(mutex->lock_word);
__asm MOV EDX, 0
__asm MOV ECX, lw
__asm XCHG EDX, DWORD PTR [ECX]
2005-10-27 07:29:40 +00:00
#elif defined(not_defined) && defined(__GNUC__) && defined(UNIV_INTEL_X86)
ulint res;
2005-10-27 07:29:40 +00:00
TAS(&mutex->lock_word, 0, res);
2005-10-27 07:29:40 +00:00
#else
mutex->lock_word = 0;
os_fast_mutex_unlock(&(mutex->os_fast_mutex));
#endif
}
/**********************************************************************
Gets the value of the lock word. */
UNIV_INLINE
ulint
mutex_get_lock_word(
/*================*/
const mutex_t* mutex) /* in: mutex */
2005-10-27 07:29:40 +00:00
{
const volatile ulint* ptr; /* declared volatile to ensure that
lock_word is loaded from memory */
2005-10-27 07:29:40 +00:00
ut_ad(mutex);
ptr = &(mutex->lock_word);
return(*ptr);
}
/**********************************************************************
Gets the waiters field in a mutex. */
UNIV_INLINE
ulint
mutex_get_waiters(
/*==============*/
/* out: value to set */
const mutex_t* mutex) /* in: mutex */
2005-10-27 07:29:40 +00:00
{
const volatile ulint* ptr; /* declared volatile to ensure that
the value is read from memory */
2005-10-27 07:29:40 +00:00
ut_ad(mutex);
ptr = &(mutex->waiters);
return(*ptr); /* Here we assume that the read of a single
word from memory is atomic */
}
/**********************************************************************
Unlocks a mutex owned by the current thread. */
UNIV_INLINE
void
mutex_exit(
/*=======*/
mutex_t* mutex) /* in: pointer to mutex */
{
ut_ad(mutex_own(mutex));
ut_d(mutex->thread_id = (os_thread_id_t) ULINT_UNDEFINED);
2005-10-27 07:29:40 +00:00
#ifdef UNIV_SYNC_DEBUG
2005-10-27 07:29:40 +00:00
sync_thread_reset_level(mutex);
#endif
2005-10-27 07:29:40 +00:00
mutex_reset_lock_word(mutex);
/* A problem: we assume that mutex_reset_lock word
is a memory barrier, that is when we read the waiters
field next, the read must be serialized in memory
after the reset. A speculative processor might
perform the read first, which could leave a waiting
thread hanging indefinitely.
Our current solution call every 10 seconds
sync_arr_wake_threads_if_sema_free()
to wake up possible hanging threads if
they are missed in mutex_signal_object. */
if (mutex_get_waiters(mutex) != 0) {
2005-10-27 07:29:40 +00:00
mutex_signal_object(mutex);
}
2005-10-27 07:29:40 +00:00
#ifdef UNIV_SYNC_PERF_STAT
mutex_exit_count++;
#endif
}
/**********************************************************************
Locks a mutex for the current thread. If the mutex is reserved, the function
spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting for the mutex
before suspending the thread. */
UNIV_INLINE
void
mutex_enter_func(
/*=============*/
mutex_t* mutex, /* in: pointer to mutex */
const char* file_name, /* in: file name where locked */
2005-10-27 07:29:40 +00:00
ulint line) /* in: line where locked */
{
ut_ad(mutex_validate(mutex));
ut_ad(!mutex_own(mutex));
2005-10-27 07:29:40 +00:00
/* Note that we do not peek at the value of lock_word before trying
the atomic test_and_set; we could peek, and possibly save time. */
#if defined UNIV_DEBUG && !defined UNIV_HOTBACKUP
mutex->count_using++;
#endif /* UNIV_DEBUG && !UNIV_HOTBACKUP */
if (!mutex_test_and_set(mutex)) {
ut_d(mutex->thread_id = os_thread_get_curr_id());
2005-10-27 07:29:40 +00:00
#ifdef UNIV_SYNC_DEBUG
mutex_set_debug_info(mutex, file_name, line);
#endif
return; /* Succeeded! */
}
mutex_spin_wait(mutex, file_name, line);
}