mariadb/sql/item_cmpfunc.cc

4117 lines
98 KiB
C++
Raw Normal View History

/* Copyright (C) 2000-2003 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
2000-07-31 21:29:14 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
2000-07-31 21:29:14 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2000-07-31 21:29:14 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* This file defines all compare functions */
#ifdef USE_PRAGMA_IMPLEMENTATION
2000-07-31 21:29:14 +02:00
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"
static bool convert_constant_item(THD *thd, Field *field, Item **item);
static Item_result item_store_type(Item_result a,Item_result b)
{
if (a == STRING_RESULT || b == STRING_RESULT)
return STRING_RESULT;
else if (a == REAL_RESULT || b == REAL_RESULT)
return REAL_RESULT;
2005-02-09 02:50:45 +04:00
else if (a == DECIMAL_RESULT || b == DECIMAL_RESULT)
return DECIMAL_RESULT;
else
return INT_RESULT;
}
static void agg_result_type(Item_result *type, Item **items, uint nitems)
{
Item **item, **item_end;
*type= STRING_RESULT;
/* Skip beginning NULL items */
for (item= items, item_end= item + nitems; item < item_end; item++)
{
if ((*item)->type() != Item::NULL_ITEM)
{
*type= (*item)->result_type();
item++;
break;
}
}
/* Combine result types. Note: NULL items don't affect the result */
for (; item < item_end; item++)
{
if ((*item)->type() != Item::NULL_ITEM)
*type= item_store_type(type[0], (*item)->result_type());
}
}
/*
Aggregates result types from the array of items.
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
SYNOPSIS
agg_cmp_type()
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
items array of items to aggregate the type from
nitems number of items in the array
DESCRIPTION
This function aggregates result types from the array of items. Found type
supposed to be used later for comparison of values of these items.
Aggregation itself is performed by the item_cmp_type() function.
*/
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
static Item_result agg_cmp_type(Item **items, uint nitems)
{
uint i;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
Item_result type= items[0]->result_type();
for (i= 1 ; i < nitems ; i++)
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
type= item_cmp_type(type, items[i]->result_type());
return type;
}
/*
Collects different types for comparison of first item with each other items
SYNOPSIS
collect_cmp_types()
items Array of items to collect types from
nitems Number of items in the array
DESCRIPTION
This function collects different result types for comparison of the first
item in the list with each of the remaining items in the 'items' array.
RETURN
Bitmap of collected types
*/
static uint collect_cmp_types(Item **items, uint nitems)
{
uint i;
uint found_types;
Item_result left_result= items[0]->result_type();
DBUG_ASSERT(nitems > 1);
found_types= 0;
for (i= 1; i < nitems ; i++)
found_types|= 1<< (uint)item_cmp_type(left_result,
items[i]->result_type());
return found_types;
}
2005-02-09 02:50:45 +04:00
static void my_coll_agg_error(DTCollation &c1, DTCollation &c2,
const char *fname)
{
my_error(ER_CANT_AGGREGATE_2COLLATIONS, MYF(0),
c1.collation->name,c1.derivation_name(),
c2.collation->name,c2.derivation_name(),
fname);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Eq_creator::create(Item *a, Item *b) const
{
return new Item_func_eq(a, b);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Ne_creator::create(Item *a, Item *b) const
{
return new Item_func_ne(a, b);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Gt_creator::create(Item *a, Item *b) const
{
return new Item_func_gt(a, b);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Lt_creator::create(Item *a, Item *b) const
{
return new Item_func_lt(a, b);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Ge_creator::create(Item *a, Item *b) const
{
return new Item_func_ge(a, b);
}
2003-11-03 12:28:36 +02:00
Item_bool_func2* Le_creator::create(Item *a, Item *b) const
{
return new Item_func_le(a, b);
}
2002-02-22 15:24:42 +04:00
2000-07-31 21:29:14 +02:00
/*
Test functions
Most of these returns 0LL if false and 1LL if true and
NULL if some arg is NULL.
2000-07-31 21:29:14 +02:00
*/
longlong Item_func_not::val_int()
{
DBUG_ASSERT(fixed == 1);
2005-02-09 02:50:45 +04:00
bool value= args[0]->val_bool();
2000-07-31 21:29:14 +02:00
null_value=args[0]->null_value;
return ((!null_value && value == 0) ? 1 : 0);
2000-07-31 21:29:14 +02:00
}
/*
special NOT for ALL subquery
*/
longlong Item_func_not_all::val_int()
{
DBUG_ASSERT(fixed == 1);
2005-02-09 02:50:45 +04:00
bool value= args[0]->val_bool();
/*
2005-02-09 02:50:45 +04:00
return TRUE if there was records in underlying select in max/min
optimization (ALL subquery)
*/
if (empty_underlying_subquery())
return 1;
null_value= args[0]->null_value;
return ((!null_value && value == 0) ? 1 : 0);
}
bool Item_func_not_all::empty_underlying_subquery()
{
return ((test_sum_item && !test_sum_item->any_value()) ||
(test_sub_item && !test_sub_item->any_value()));
}
void Item_func_not_all::print(String *str)
{
if (show)
Item_func::print(str);
else
args[0]->print(str);
}
/*
2004-12-07 21:18:15 +02:00
Special NOP (No OPeration) for ALL subquery it is like Item_func_not_all
2005-02-09 02:50:45 +04:00
(return TRUE if underlying subquery do not return rows) but if subquery
2004-12-07 21:18:15 +02:00
returns some rows it return same value as argument (TRUE/FALSE).
*/
longlong Item_func_nop_all::val_int()
{
DBUG_ASSERT(fixed == 1);
2004-12-31 00:44:00 +02:00
longlong value= args[0]->val_int();
/*
2005-02-09 02:50:45 +04:00
return FALSE if there was records in underlying select in max/min
optimization (SAME/ANY subquery)
*/
if (empty_underlying_subquery())
2004-12-13 01:21:14 +02:00
return 0;
null_value= args[0]->null_value;
return (null_value || value == 0) ? 0 : 1;
}
/*
Convert a constant item to an int and replace the original item
SYNOPSIS
convert_constant_item()
thd thread handle
field item will be converted using the type of this field
item [in/out] reference to the item to convert
DESCRIPTION
The function converts a constant expression or string to an integer.
On successful conversion the original item is substituted for the
result of the item evaluation.
This is done when comparing DATE/TIME of different formats and
also when comparing bigint to strings (in which case strings
are converted to bigints).
NOTES
This function is called only at prepare stage.
As all derived tables are filled only after all derived tables
are prepared we do not evaluate items with subselects here because
they can contain derived tables and thus we may attempt to use a
table that has not been populated yet.
RESULT VALUES
0 Can't convert item
1 Item was replaced with an integer version of the item
*/
2000-07-31 21:29:14 +02:00
static bool convert_constant_item(THD *thd, Field *field, Item **item)
2000-07-31 21:29:14 +02:00
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
int result= 0;
if (!(*item)->with_subselect && (*item)->const_item())
2000-07-31 21:29:14 +02:00
{
TABLE *table= field->table;
ulong orig_sql_mode= thd->variables.sql_mode;
my_bitmap_map *old_write_map;
my_bitmap_map *old_read_map;
if (table)
{
old_write_map= dbug_tmp_use_all_columns(table, table->write_set);
old_read_map= dbug_tmp_use_all_columns(table, table->read_set);
}
/* For comparison purposes allow invalid dates like 2000-01-32 */
thd->variables.sql_mode|= MODE_INVALID_DATES;
2002-12-05 19:38:42 +02:00
if (!(*item)->save_in_field(field, 1) && !((*item)->null_value))
2000-07-31 21:29:14 +02:00
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
Item *tmp= new Item_int_with_ref(field->val_int(), *item,
test(field->flags & UNSIGNED_FLAG));
if (tmp)
thd->change_item_tree(item, tmp);
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
result= 1; // Item was replaced
2000-07-31 21:29:14 +02:00
}
thd->variables.sql_mode= orig_sql_mode;
if (table)
{
dbug_tmp_restore_column_map(table->write_set, old_write_map);
dbug_tmp_restore_column_map(table->read_set, old_read_map);
}
2000-07-31 21:29:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
return result;
2000-07-31 21:29:14 +02:00
}
void Item_bool_func2::fix_length_and_dec()
{
max_length= 1; // Function returns 0 or 1
THD *thd= current_thd;
/*
As some compare functions are generated after sql_yacc,
we have to check for out of memory conditions here
*/
if (!args[0] || !args[1])
return;
/*
We allow to convert to Unicode character sets in some cases.
The conditions when conversion is possible are:
- arguments A and B have different charsets
- A wins according to coercibility rules
- character set of A is superset for character set of B
If all of the above is true, then it's possible to convert
B into the character set of A, and then compare according
to the collation of A.
*/
DTCollation coll;
if (args[0]->result_type() == STRING_RESULT &&
args[1]->result_type() == STRING_RESULT &&
agg_arg_charsets(coll, args, 2, MY_COLL_CMP_CONV, 1))
return;
args[0]->cmp_context= args[1]->cmp_context=
item_cmp_type(args[0]->result_type(), args[1]->result_type());
2000-07-31 21:29:14 +02:00
// Make a special case of compare with fields to get nicer DATE comparisons
2004-03-11 18:21:57 +04:00
if (functype() == LIKE_FUNC) // Disable conversion in case of LIKE function.
{
set_cmp_func();
return;
}
if (!thd->is_context_analysis_only())
2000-07-31 21:29:14 +02:00
{
Item *real_item= args[0]->real_item();
if (real_item->type() == FIELD_ITEM)
2000-07-31 21:29:14 +02:00
{
Field *field=((Item_field*) real_item)->field;
if (field->can_be_compared_as_longlong())
2000-07-31 21:29:14 +02:00
{
if (convert_constant_item(thd, field,&args[1]))
{
cmp.set_cmp_func(this, tmp_arg, tmp_arg+1,
INT_RESULT); // Works for all types.
args[0]->cmp_context= args[1]->cmp_context= INT_RESULT;
return;
}
2000-07-31 21:29:14 +02:00
}
}
real_item= args[1]->real_item();
if (real_item->type() == FIELD_ITEM /* && !real_item->const_item() */)
2000-07-31 21:29:14 +02:00
{
Field *field=((Item_field*) real_item)->field;
if (field->can_be_compared_as_longlong())
2000-07-31 21:29:14 +02:00
{
if (convert_constant_item(thd, field,&args[0]))
{
cmp.set_cmp_func(this, tmp_arg, tmp_arg+1,
INT_RESULT); // Works for all types.
args[0]->cmp_context= args[1]->cmp_context= INT_RESULT;
return;
}
2000-07-31 21:29:14 +02:00
}
}
}
set_cmp_func();
2000-07-31 21:29:14 +02:00
}
int Arg_comparator::set_compare_func(Item_bool_func2 *item, Item_result type)
2000-07-31 21:29:14 +02:00
{
owner= item;
2004-08-07 23:18:13 +02:00
func= comparator_matrix[type]
[test(owner->functype() == Item_func::EQUAL_FUNC)];
switch (type) {
2005-02-09 02:50:45 +04:00
case ROW_RESULT:
2002-11-15 20:32:09 +02:00
{
uint n= (*a)->cols();
if (n != (*b)->cols())
{
2003-10-06 22:35:05 +03:00
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
comparators= 0;
return 1;
}
if (!(comparators= new Arg_comparator[n]))
return 1;
for (uint i=0; i < n; i++)
{
if ((*a)->el(i)->cols() != (*b)->el(i)->cols())
{
2003-10-06 22:35:05 +03:00
my_error(ER_OPERAND_COLUMNS, MYF(0), (*a)->el(i)->cols());
return 1;
}
comparators[i].set_cmp_func(owner, (*a)->addr(i), (*b)->addr(i));
}
2005-02-09 02:50:45 +04:00
break;
}
2005-02-09 02:50:45 +04:00
case STRING_RESULT:
{
/*
We must set cmp_charset here as we may be called from for an automatic
generated item, like in natural join
*/
if (cmp_collation.set((*a)->collation, (*b)->collation) ||
cmp_collation.derivation == DERIVATION_NONE)
{
my_coll_agg_error((*a)->collation, (*b)->collation, owner->func_name());
return 1;
}
if (cmp_collation.collation == &my_charset_bin)
{
/*
We are using BLOB/BINARY/VARBINARY, change to compare byte by byte,
without removing end space
*/
if (func == &Arg_comparator::compare_string)
func= &Arg_comparator::compare_binary_string;
else if (func == &Arg_comparator::compare_e_string)
func= &Arg_comparator::compare_e_binary_string;
/*
2005-02-09 02:50:45 +04:00
As this is binary compassion, mark all fields that they can't be
transformed. Otherwise we would get into trouble with comparisons
like:
WHERE col= 'j' AND col LIKE BINARY 'j'
which would be transformed to:
WHERE col= 'j'
*/
2006-08-30 23:09:47 +04:00
(*a)->walk(&Item::set_no_const_sub, FALSE, (byte*) 0);
(*b)->walk(&Item::set_no_const_sub, FALSE, (byte*) 0);
}
2005-02-09 02:50:45 +04:00
break;
}
2005-02-09 02:50:45 +04:00
case INT_RESULT:
{
if (func == &Arg_comparator::compare_int_signed)
{
if ((*a)->unsigned_flag)
2005-02-09 02:50:45 +04:00
func= (((*b)->unsigned_flag)?
&Arg_comparator::compare_int_unsigned :
&Arg_comparator::compare_int_unsigned_signed);
else if ((*b)->unsigned_flag)
func= &Arg_comparator::compare_int_signed_unsigned;
}
else if (func== &Arg_comparator::compare_e_int)
{
if ((*a)->unsigned_flag ^ (*b)->unsigned_flag)
func= &Arg_comparator::compare_e_int_diff_signedness;
}
2005-02-09 02:50:45 +04:00
break;
}
case DECIMAL_RESULT:
case REAL_RESULT:
break;
default:
DBUG_ASSERT(0);
}
return 0;
2002-11-15 20:32:09 +02:00
}
2000-07-31 21:29:14 +02:00
int Arg_comparator::compare_string()
2000-07-31 21:29:14 +02:00
{
String *res1,*res2;
if ((res1= (*a)->val_str(&owner->tmp_value1)))
2000-07-31 21:29:14 +02:00
{
if ((res2= (*b)->val_str(&owner->tmp_value2)))
2000-07-31 21:29:14 +02:00
{
2002-11-15 20:32:09 +02:00
owner->null_value= 0;
return sortcmp(res1,res2,cmp_collation.collation);
2000-07-31 21:29:14 +02:00
}
}
2002-11-15 20:32:09 +02:00
owner->null_value= 1;
2000-07-31 21:29:14 +02:00
return -1;
}
/*
Compare strings byte by byte. End spaces are also compared.
RETURN
< 0 *a < *b
0 *b == *b
> 0 *a > *b
*/
int Arg_comparator::compare_binary_string()
{
String *res1,*res2;
if ((res1= (*a)->val_str(&owner->tmp_value1)))
{
if ((res2= (*b)->val_str(&owner->tmp_value2)))
{
owner->null_value= 0;
uint res1_length= res1->length();
uint res2_length= res2->length();
int cmp= memcmp(res1->ptr(), res2->ptr(), min(res1_length,res2_length));
return cmp ? cmp : (int) (res1_length - res2_length);
}
}
owner->null_value= 1;
return -1;
}
/*
Compare strings, but take into account that NULL == NULL
*/
2002-11-28 09:11:35 +02:00
int Arg_comparator::compare_e_string()
{
String *res1,*res2;
res1= (*a)->val_str(&owner->tmp_value1);
res2= (*b)->val_str(&owner->tmp_value2);
2002-11-28 09:11:35 +02:00
if (!res1 || !res2)
return test(res1 == res2);
return test(sortcmp(res1, res2, cmp_collation.collation) == 0);
2002-11-28 09:11:35 +02:00
}
int Arg_comparator::compare_e_binary_string()
{
String *res1,*res2;
res1= (*a)->val_str(&owner->tmp_value1);
res2= (*b)->val_str(&owner->tmp_value2);
if (!res1 || !res2)
return test(res1 == res2);
return test(stringcmp(res1, res2) == 0);
}
int Arg_comparator::compare_real()
2000-07-31 21:29:14 +02:00
{
/*
Fix yet another manifestation of Bug#2338. 'Volatile' will instruct
gcc to flush double values out of 80-bit Intel FPU registers before
performing the comparison.
*/
volatile double val1, val2;
2005-04-01 10:13:37 +02:00
val1= (*a)->val_real();
if (!(*a)->null_value)
2000-07-31 21:29:14 +02:00
{
2005-04-01 10:13:37 +02:00
val2= (*b)->val_real();
if (!(*b)->null_value)
2000-07-31 21:29:14 +02:00
{
2002-11-15 20:32:09 +02:00
owner->null_value= 0;
2000-07-31 21:29:14 +02:00
if (val1 < val2) return -1;
if (val1 == val2) return 0;
return 1;
}
}
2002-11-15 20:32:09 +02:00
owner->null_value= 1;
2000-07-31 21:29:14 +02:00
return -1;
}
2005-02-09 02:50:45 +04:00
int Arg_comparator::compare_decimal()
{
my_decimal value1;
my_decimal *val1= (*a)->val_decimal(&value1);
if (!(*a)->null_value)
{
my_decimal value2;
my_decimal *val2= (*b)->val_decimal(&value2);
if (!(*b)->null_value)
{
owner->null_value= 0;
return my_decimal_cmp(val1, val2);
}
}
owner->null_value= 1;
return -1;
}
2002-11-28 09:11:35 +02:00
int Arg_comparator::compare_e_real()
{
2004-11-11 21:39:35 +03:00
double val1= (*a)->val_real();
double val2= (*b)->val_real();
if ((*a)->null_value || (*b)->null_value)
return test((*a)->null_value && (*b)->null_value);
2002-11-28 09:11:35 +02:00
return test(val1 == val2);
}
2000-07-31 21:29:14 +02:00
2005-02-09 02:50:45 +04:00
int Arg_comparator::compare_e_decimal()
{
my_decimal value1, value2;
my_decimal *val1= (*a)->val_decimal(&value1);
my_decimal *val2= (*b)->val_decimal(&value2);
if ((*a)->null_value || (*b)->null_value)
return test((*a)->null_value && (*b)->null_value);
return test(my_decimal_cmp(val1, val2) == 0);
}
int Arg_comparator::compare_int_signed()
2000-07-31 21:29:14 +02:00
{
longlong val1= (*a)->val_int();
if (!(*a)->null_value)
2000-07-31 21:29:14 +02:00
{
longlong val2= (*b)->val_int();
if (!(*b)->null_value)
2000-07-31 21:29:14 +02:00
{
2002-11-15 20:32:09 +02:00
owner->null_value= 0;
2000-07-31 21:29:14 +02:00
if (val1 < val2) return -1;
if (val1 == val2) return 0;
return 1;
}
}
2002-11-15 20:32:09 +02:00
owner->null_value= 1;
2000-07-31 21:29:14 +02:00
return -1;
}
/*
Compare values as BIGINT UNSIGNED.
*/
int Arg_comparator::compare_int_unsigned()
{
ulonglong val1= (*a)->val_int();
if (!(*a)->null_value)
{
ulonglong val2= (*b)->val_int();
if (!(*b)->null_value)
{
owner->null_value= 0;
if (val1 < val2) return -1;
if (val1 == val2) return 0;
return 1;
}
}
owner->null_value= 1;
return -1;
}
/*
Compare signed (*a) with unsigned (*B)
*/
int Arg_comparator::compare_int_signed_unsigned()
{
longlong sval1= (*a)->val_int();
if (!(*a)->null_value)
{
ulonglong uval2= (ulonglong)(*b)->val_int();
if (!(*b)->null_value)
{
owner->null_value= 0;
if (sval1 < 0 || (ulonglong)sval1 < uval2)
return -1;
if ((ulonglong)sval1 == uval2)
return 0;
return 1;
}
}
owner->null_value= 1;
return -1;
}
/*
Compare unsigned (*a) with signed (*B)
*/
int Arg_comparator::compare_int_unsigned_signed()
{
ulonglong uval1= (ulonglong)(*a)->val_int();
if (!(*a)->null_value)
{
longlong sval2= (*b)->val_int();
if (!(*b)->null_value)
{
owner->null_value= 0;
if (sval2 < 0)
return 1;
if (uval1 < (ulonglong)sval2)
return -1;
if (uval1 == (ulonglong)sval2)
return 0;
return 1;
}
}
owner->null_value= 1;
return -1;
}
2002-11-28 09:11:35 +02:00
int Arg_comparator::compare_e_int()
{
longlong val1= (*a)->val_int();
longlong val2= (*b)->val_int();
if ((*a)->null_value || (*b)->null_value)
return test((*a)->null_value && (*b)->null_value);
2002-11-28 09:11:35 +02:00
return test(val1 == val2);
}
/*
Compare unsigned *a with signed *b or signed *a with unsigned *b.
*/
int Arg_comparator::compare_e_int_diff_signedness()
{
longlong val1= (*a)->val_int();
longlong val2= (*b)->val_int();
if ((*a)->null_value || (*b)->null_value)
return test((*a)->null_value && (*b)->null_value);
return (val1 >= 0) && test(val1 == val2);
}
2002-11-28 09:11:35 +02:00
int Arg_comparator::compare_row()
2002-11-15 20:32:09 +02:00
{
int res= 0;
bool was_null= 0;
(*a)->bring_value();
(*b)->bring_value();
uint n= (*a)->cols();
2002-11-27 19:16:06 +02:00
for (uint i= 0; i<n; i++)
2002-11-15 20:32:09 +02:00
{
res= comparators[i].compare();
2002-11-15 20:32:09 +02:00
if (owner->null_value)
{
// NULL was compared
if (owner->abort_on_null)
return -1; // We do not need correct NULL returning
was_null= 1;
owner->null_value= 0;
res= 0; // continue comparison (maybe we will meet explicit difference)
}
else if (res)
return res;
2002-11-15 20:32:09 +02:00
}
if (was_null)
{
/*
There was NULL(s) in comparison in some parts, but there was not
explicit difference in other parts, so we have to return NULL
*/
owner->null_value= 1;
return -1;
}
return 0;
2002-11-15 20:32:09 +02:00
}
2000-07-31 21:29:14 +02:00
2002-11-28 09:11:35 +02:00
int Arg_comparator::compare_e_row()
{
(*a)->bring_value();
(*b)->bring_value();
uint n= (*a)->cols();
2002-11-28 09:11:35 +02:00
for (uint i= 0; i<n; i++)
{
if (!comparators[i].compare())
return 0;
2002-11-28 09:11:35 +02:00
}
return 1;
}
bool Item_in_optimizer::fix_left(THD *thd, Item **ref)
2002-12-19 21:15:09 +02:00
{
if (!args[0]->fixed && args[0]->fix_fields(thd, args) ||
2004-04-10 01:14:32 +03:00
!cache && !(cache= Item_cache::get_cache(args[0]->result_type())))
return 1;
cache->setup(args[0]);
if (cache->cols() == 1)
{
if ((used_tables_cache= args[0]->used_tables()))
cache->set_used_tables(OUTER_REF_TABLE_BIT);
else
cache->set_used_tables(0);
}
else
{
uint n= cache->cols();
for (uint i= 0; i < n; i++)
{
if (args[0]->el(i)->used_tables())
((Item_cache *)cache->el(i))->set_used_tables(OUTER_REF_TABLE_BIT);
else
((Item_cache *)cache->el(i))->set_used_tables(0);
}
used_tables_cache= args[0]->used_tables();
}
not_null_tables_cache= args[0]->not_null_tables();
with_sum_func= args[0]->with_sum_func;
const_item_cache= args[0]->const_item();
return 0;
}
bool Item_in_optimizer::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
if (fix_left(thd, ref))
return TRUE;
if (args[0]->maybe_null)
maybe_null=1;
if (!args[1]->fixed && args[1]->fix_fields(thd, args+1))
return TRUE;
2002-12-19 21:15:09 +02:00
Item_in_subselect * sub= (Item_in_subselect *)args[1];
if (args[0]->cols() != sub->engine->cols())
{
2003-10-06 22:35:05 +03:00
my_error(ER_OPERAND_COLUMNS, MYF(0), args[0]->cols());
return TRUE;
2002-12-19 21:15:09 +02:00
}
if (args[1]->maybe_null)
maybe_null=1;
with_sum_func= with_sum_func || args[1]->with_sum_func;
used_tables_cache|= args[1]->used_tables();
not_null_tables_cache|= args[1]->not_null_tables();
const_item_cache&= args[1]->const_item();
fixed= 1;
return FALSE;
}
longlong Item_in_optimizer::val_int()
{
DBUG_ASSERT(fixed == 1);
cache->store(args[0]);
if (cache->null_value)
{
null_value= 1;
return 0;
}
2005-04-01 02:14:30 +03:00
bool tmp= args[1]->val_bool_result();
null_value= args[1]->null_value;
return tmp;
}
void Item_in_optimizer::keep_top_level_cache()
{
cache->keep_array();
save_cache= 1;
}
void Item_in_optimizer::cleanup()
{
DBUG_ENTER("Item_in_optimizer::cleanup");
Item_bool_func::cleanup();
if (!save_cache)
cache= 0;
DBUG_VOID_RETURN;
}
bool Item_in_optimizer::is_null()
{
cache->store(args[0]);
return (null_value= (cache->null_value || args[1]->is_null()));
}
2002-11-28 09:11:35 +02:00
2000-07-31 21:29:14 +02:00
longlong Item_func_eq::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
2000-07-31 21:29:14 +02:00
return value == 0 ? 1 : 0;
}
2000-07-31 21:29:14 +02:00
/* Same as Item_func_eq, but NULL = NULL */
void Item_func_equal::fix_length_and_dec()
{
Item_bool_func2::fix_length_and_dec();
maybe_null=null_value=0;
}
2000-07-31 21:29:14 +02:00
longlong Item_func_equal::val_int()
{
DBUG_ASSERT(fixed == 1);
return cmp.compare();
2000-07-31 21:29:14 +02:00
}
longlong Item_func_ne::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value != 0 && !null_value ? 1 : 0;
2000-07-31 21:29:14 +02:00
}
longlong Item_func_ge::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
2000-07-31 21:29:14 +02:00
return value >= 0 ? 1 : 0;
}
longlong Item_func_gt::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
2000-07-31 21:29:14 +02:00
return value > 0 ? 1 : 0;
}
longlong Item_func_le::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
2000-07-31 21:29:14 +02:00
return value <= 0 && !null_value ? 1 : 0;
}
longlong Item_func_lt::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
2000-07-31 21:29:14 +02:00
return value < 0 && !null_value ? 1 : 0;
}
longlong Item_func_strcmp::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
String *a=args[0]->val_str(&tmp_value1);
String *b=args[1]->val_str(&tmp_value2);
if (!a || !b)
{
null_value=1;
return 0;
}
int value= sortcmp(a,b,cmp.cmp_collation.collation);
2000-07-31 21:29:14 +02:00
null_value=0;
return !value ? 0 : (value < 0 ? (longlong) -1 : (longlong) 1);
}
void Item_func_interval::fix_length_and_dec()
{
2005-02-09 02:50:45 +04:00
use_decimal_comparison= (row->el(0)->result_type() == DECIMAL_RESULT) ||
(row->el(0)->result_type() == INT_RESULT);
if (row->cols() > 8)
2000-07-31 21:29:14 +02:00
{
bool consts=1;
for (uint i=1 ; consts && i < row->cols() ; i++)
2000-07-31 21:29:14 +02:00
{
consts&= row->el(i)->const_item();
2000-07-31 21:29:14 +02:00
}
if (consts &&
2005-02-09 02:50:45 +04:00
(intervals=
(interval_range*) sql_alloc(sizeof(interval_range)*(row->cols()-1))))
2000-07-31 21:29:14 +02:00
{
2005-02-09 02:50:45 +04:00
if (use_decimal_comparison)
{
for (uint i=1 ; i < row->cols(); i++)
{
Item *el= row->el(i);
interval_range *range= intervals + (i-1);
if ((el->result_type() == DECIMAL_RESULT) ||
(el->result_type() == INT_RESULT))
{
range->type= DECIMAL_RESULT;
range->dec.init();
my_decimal *dec= el->val_decimal(&range->dec);
if (dec != &range->dec)
{
range->dec= *dec;
range->dec.fix_buffer_pointer();
}
}
else
{
range->type= REAL_RESULT;
range->dbl= el->val_real();
}
}
}
else
{
for (uint i=1 ; i < row->cols(); i++)
{
intervals[i-1].dbl= row->el(i)->val_real();
}
}
2000-07-31 21:29:14 +02:00
}
}
maybe_null= 0;
max_length= 2;
used_tables_cache|= row->used_tables();
2004-11-28 18:19:01 +01:00
not_null_tables_cache= row->not_null_tables();
with_sum_func= with_sum_func || row->with_sum_func;
2003-08-29 13:44:35 +03:00
const_item_cache&= row->const_item();
2000-07-31 21:29:14 +02:00
}
2003-02-04 21:52:14 +02:00
2000-07-31 21:29:14 +02:00
/*
2005-02-15 19:25:42 +02:00
Execute Item_func_interval()
SYNOPSIS
Item_func_interval::val_int()
NOTES
If we are doing a decimal comparison, we are
evaluating the first item twice.
RETURN
-1 if null value,
0 if lower than lowest
1 - arg_count-1 if between args[n] and args[n+1]
arg_count if higher than biggest argument
2000-07-31 21:29:14 +02:00
*/
longlong Item_func_interval::val_int()
{
DBUG_ASSERT(fixed == 1);
double value;
2005-02-09 02:50:45 +04:00
my_decimal dec_buf, *dec= NULL;
2005-02-15 19:25:42 +02:00
uint i;
2005-02-09 02:50:45 +04:00
if (use_decimal_comparison)
{
dec= row->el(0)->val_decimal(&dec_buf);
if (row->el(0)->null_value)
return -1;
my_decimal2double(E_DEC_FATAL_ERROR, dec, &value);
}
else
{
value= row->el(0)->val_real();
if (row->el(0)->null_value)
return -1;
2005-02-09 02:50:45 +04:00
}
2003-08-11 22:44:43 +03:00
2000-07-31 21:29:14 +02:00
if (intervals)
{ // Use binary search to find interval
uint start,end;
start= 0;
2003-08-11 22:44:43 +03:00
end= row->cols()-2;
2000-07-31 21:29:14 +02:00
while (start != end)
{
uint mid= (start + end + 1) / 2;
2005-02-09 02:50:45 +04:00
interval_range *range= intervals + mid;
my_bool cmp_result;
2005-02-15 19:25:42 +02:00
/*
The values in the range intervall may have different types,
Only do a decimal comparision of the first argument is a decimal
and we are comparing against a decimal
*/
2005-02-09 02:50:45 +04:00
if (dec && range->type == DECIMAL_RESULT)
cmp_result= my_decimal_cmp(&range->dec, dec) <= 0;
else
cmp_result= (range->dbl <= value);
if (cmp_result)
start= mid;
2000-07-31 21:29:14 +02:00
else
end= mid - 1;
2000-07-31 21:29:14 +02:00
}
2005-02-09 02:50:45 +04:00
interval_range *range= intervals+start;
return ((dec && range->type == DECIMAL_RESULT) ?
2005-02-15 19:25:42 +02:00
my_decimal_cmp(dec, &range->dec) < 0 :
2005-02-09 02:50:45 +04:00
value < range->dbl) ? 0 : start + 1;
2000-07-31 21:29:14 +02:00
}
for (i=1 ; i < row->cols() ; i++)
2000-07-31 21:29:14 +02:00
{
2005-02-09 02:50:45 +04:00
Item *el= row->el(i);
if (use_decimal_comparison &&
((el->result_type() == DECIMAL_RESULT) ||
(el->result_type() == INT_RESULT)))
{
my_decimal e_dec_buf, *e_dec= row->el(i)->val_decimal(&e_dec_buf);
if (my_decimal_cmp(e_dec, dec) > 0)
return i-1;
}
2005-02-15 19:25:42 +02:00
else if (row->el(i)->val_real() > value)
return i-1;
2000-07-31 21:29:14 +02:00
}
return i-1;
2002-11-14 00:26:18 +02:00
}
2005-02-15 19:25:42 +02:00
/*
Perform context analysis of a BETWEEN item tree
SYNOPSIS:
fix_fields()
thd reference to the global context of the query thread
tables list of all open tables involved in the query
ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
DESCRIPTION
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_between as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
NOTES
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
T0(e BETWEEN e1 AND e2) = union(T1(e),T1(e1),T1(e2))
T1(e BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
T0(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
T1(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
RETURN
0 ok
1 got error
*/
2005-09-13 01:44:50 +03:00
bool Item_func_between::fix_fields(THD *thd, Item **ref)
{
if (Item_func_opt_neg::fix_fields(thd, ref))
return 1;
/* not_null_tables_cache == union(T1(e),T1(e1),T1(e2)) */
if (pred_level && !negated)
return 0;
/* not_null_tables_cache == union(T1(e), intersection(T1(e1),T1(e2))) */
not_null_tables_cache= (args[0]->not_null_tables() |
(args[1]->not_null_tables() &
args[2]->not_null_tables()));
return 0;
}
2000-07-31 21:29:14 +02:00
void Item_func_between::fix_length_and_dec()
{
max_length= 1;
THD *thd= current_thd;
2000-07-31 21:29:14 +02:00
/*
As some compare functions are generated after sql_yacc,
2005-02-09 02:50:45 +04:00
we have to check for out of memory conditions here
*/
2000-07-31 21:29:14 +02:00
if (!args[0] || !args[1] || !args[2])
return;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
cmp_type= agg_cmp_type(args, 3);
if (cmp_type == STRING_RESULT &&
agg_arg_charsets(cmp_collation, args, 3, MY_COLL_CMP_CONV, 1))
return;
/*
Make a special case of compare with date/time and longlong fields.
They are compared as integers, so for const item this time-consuming
conversion can be done only once, not for every single comparison
*/
2006-09-18 12:14:27 +02:00
if (args[0]->type() == FIELD_ITEM &&
thd->lex->sql_command != SQLCOM_CREATE_VIEW &&
thd->lex->sql_command != SQLCOM_SHOW_CREATE)
{
Field *field=((Item_field*) args[0])->field;
if (field->can_be_compared_as_longlong())
{
/*
The following can't be recoded with || as convert_constant_item
changes the argument
*/
if (convert_constant_item(thd, field,&args[1]))
cmp_type=INT_RESULT; // Works for all types.
if (convert_constant_item(thd, field,&args[2]))
cmp_type=INT_RESULT; // Works for all types.
}
}
2000-07-31 21:29:14 +02:00
}
longlong Item_func_between::val_int()
{ // ANSI BETWEEN
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
if (cmp_type == STRING_RESULT)
{
String *value,*a,*b;
value=args[0]->val_str(&value0);
if ((null_value=args[0]->null_value))
return 0;
a=args[1]->val_str(&value1);
b=args[2]->val_str(&value2);
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((sortcmp(value,a,cmp_collation.collation) >= 0 &&
sortcmp(value,b,cmp_collation.collation) <= 0) !=
negated);
2000-07-31 21:29:14 +02:00
if (args[1]->null_value && args[2]->null_value)
null_value=1;
else if (args[1]->null_value)
{
// Set to not null if false range.
null_value= sortcmp(value,b,cmp_collation.collation) <= 0;
2000-07-31 21:29:14 +02:00
}
else
{
// Set to not null if false range.
null_value= sortcmp(value,a,cmp_collation.collation) >= 0;
2000-07-31 21:29:14 +02:00
}
}
else if (cmp_type == INT_RESULT)
{
2004-11-11 21:39:35 +03:00
longlong value=args[0]->val_int(), a, b;
2000-07-31 21:29:14 +02:00
if ((null_value=args[0]->null_value))
return 0; /* purecov: inspected */
2000-07-31 21:29:14 +02:00
a=args[1]->val_int();
b=args[2]->val_int();
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((value >= a && value <= b) != negated);
2000-07-31 21:29:14 +02:00
if (args[1]->null_value && args[2]->null_value)
null_value=1;
else if (args[1]->null_value)
{
null_value= value <= b; // not null if false range.
}
else
{
null_value= value >= a;
}
}
2005-02-09 02:50:45 +04:00
else if (cmp_type == DECIMAL_RESULT)
{
my_decimal dec_buf, *dec= args[0]->val_decimal(&dec_buf),
a_buf, *a_dec, b_buf, *b_dec;
if ((null_value=args[0]->null_value))
return 0; /* purecov: inspected */
a_dec= args[1]->val_decimal(&a_buf);
b_dec= args[2]->val_decimal(&b_buf);
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((my_decimal_cmp(dec, a_dec) >= 0 &&
my_decimal_cmp(dec, b_dec) <= 0) != negated);
2005-02-09 02:50:45 +04:00
if (args[1]->null_value && args[2]->null_value)
null_value=1;
else if (args[1]->null_value)
null_value= (my_decimal_cmp(dec, b_dec) <= 0);
else
null_value= (my_decimal_cmp(dec, a_dec) >= 0);
}
2000-07-31 21:29:14 +02:00
else
{
2004-11-11 21:39:35 +03:00
double value= args[0]->val_real(),a,b;
2000-07-31 21:29:14 +02:00
if ((null_value=args[0]->null_value))
return 0; /* purecov: inspected */
2004-11-11 21:39:35 +03:00
a= args[1]->val_real();
b= args[2]->val_real();
2000-07-31 21:29:14 +02:00
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((value >= a && value <= b) != negated);
2000-07-31 21:29:14 +02:00
if (args[1]->null_value && args[2]->null_value)
null_value=1;
else if (args[1]->null_value)
{
null_value= value <= b; // not null if false range.
}
else
{
null_value= value >= a;
}
}
return (longlong) (!null_value && negated);
2000-07-31 21:29:14 +02:00
}
void Item_func_between::print(String *str)
{
str->append('(');
args[0]->print(str);
2005-09-09 19:06:15 +04:00
if (negated)
str->append(STRING_WITH_LEN(" not"));
str->append(STRING_WITH_LEN(" between "));
args[1]->print(str);
str->append(STRING_WITH_LEN(" and "));
args[2]->print(str);
str->append(')');
}
2000-07-31 21:29:14 +02:00
void
Item_func_ifnull::fix_length_and_dec()
{
agg_result_type(&hybrid_type, args, 2);
2000-07-31 21:29:14 +02:00
maybe_null=args[1]->maybe_null;
2005-02-09 02:50:45 +04:00
decimals= max(args[0]->decimals, args[1]->decimals);
max_length= (hybrid_type == DECIMAL_RESULT || hybrid_type == INT_RESULT) ?
(max(args[0]->max_length - args[0]->decimals,
args[1]->max_length - args[1]->decimals) + decimals) :
max(args[0]->max_length, args[1]->max_length);
switch (hybrid_type) {
2005-02-09 02:50:45 +04:00
case STRING_RESULT:
agg_arg_charsets(collation, args, arg_count, MY_COLL_CMP_CONV, 1);
2005-02-09 02:50:45 +04:00
break;
case DECIMAL_RESULT:
case REAL_RESULT:
break;
case INT_RESULT:
decimals= 0;
2005-02-09 02:50:45 +04:00
break;
case ROW_RESULT:
default:
DBUG_ASSERT(0);
}
cached_field_type= args[0]->field_type();
if (cached_field_type != args[1]->field_type())
cached_field_type= Item_func::field_type();
2000-07-31 21:29:14 +02:00
}
uint Item_func_ifnull::decimal_precision() const
{
int max_int_part=max(args[0]->decimal_int_part(),args[1]->decimal_int_part());
return min(max_int_part + decimals, DECIMAL_MAX_PRECISION);
}
enum_field_types Item_func_ifnull::field_type() const
{
return cached_field_type;
2000-07-31 21:29:14 +02:00
}
Field *Item_func_ifnull::tmp_table_field(TABLE *table)
{
return tmp_table_field_from_field_type(table, 0);
}
2000-07-31 21:29:14 +02:00
double
Item_func_ifnull::real_op()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2004-11-11 21:39:35 +03:00
double value= args[0]->val_real();
2000-07-31 21:29:14 +02:00
if (!args[0]->null_value)
{
null_value=0;
return value;
}
2004-11-11 21:39:35 +03:00
value= args[1]->val_real();
2000-07-31 21:29:14 +02:00
if ((null_value=args[1]->null_value))
return 0.0;
return value;
}
longlong
Item_func_ifnull::int_op()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
longlong value=args[0]->val_int();
if (!args[0]->null_value)
{
null_value=0;
return value;
}
value=args[1]->val_int();
if ((null_value=args[1]->null_value))
return 0;
return value;
}
2005-02-09 02:50:45 +04:00
my_decimal *Item_func_ifnull::decimal_op(my_decimal *decimal_value)
2005-02-09 02:50:45 +04:00
{
DBUG_ASSERT(fixed == 1);
my_decimal *value= args[0]->val_decimal(decimal_value);
if (!args[0]->null_value)
{
null_value= 0;
return value;
}
value= args[1]->val_decimal(decimal_value);
if ((null_value= args[1]->null_value))
return 0;
return value;
}
2000-07-31 21:29:14 +02:00
String *
Item_func_ifnull::str_op(String *str)
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
String *res =args[0]->val_str(str);
if (!args[0]->null_value)
{
null_value=0;
res->set_charset(collation.collation);
2000-07-31 21:29:14 +02:00
return res;
}
res=args[1]->val_str(str);
if ((null_value=args[1]->null_value))
return 0;
res->set_charset(collation.collation);
2000-07-31 21:29:14 +02:00
return res;
}
/*
Perform context analysis of an IF item tree
SYNOPSIS:
fix_fields()
thd reference to the global context of the query thread
tables list of all open tables involved in the query
ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
DESCRIPTION
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_if as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
NOTES
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
T0(IF(e,e1,e2) = T1(IF(e,e1,e2))
T1(IF(e,e1,e2)) = intersection(T1(e1),T1(e2))
RETURN
0 ok
1 got error
*/
bool
Item_func_if::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
args[0]->top_level_item();
if (Item_func::fix_fields(thd, ref))
return 1;
not_null_tables_cache= (args[1]->not_null_tables() &
args[2]->not_null_tables());
return 0;
}
2000-07-31 21:29:14 +02:00
void
Item_func_if::fix_length_and_dec()
{
maybe_null=args[1]->maybe_null || args[2]->maybe_null;
2005-02-09 02:50:45 +04:00
decimals= max(args[1]->decimals, args[2]->decimals);
2000-07-31 21:29:14 +02:00
enum Item_result arg1_type=args[1]->result_type();
enum Item_result arg2_type=args[2]->result_type();
2004-06-07 12:38:35 +02:00
bool null1=args[1]->const_item() && args[1]->null_value;
bool null2=args[2]->const_item() && args[2]->null_value;
if (null1)
{
cached_result_type= arg2_type;
collation.set(args[2]->collation.collation);
}
else if (null2)
{
2002-08-12 04:04:43 +03:00
cached_result_type= arg1_type;
collation.set(args[1]->collation.collation);
}
2000-07-31 21:29:14 +02:00
else
{
agg_result_type(&cached_result_type, args+1, 2);
if (cached_result_type == STRING_RESULT)
{
if (agg_arg_charsets(collation, args+1, 2, MY_COLL_ALLOW_CONV, 1))
return;
}
else
{
collation.set(&my_charset_bin); // Number
}
}
max_length=
(cached_result_type == DECIMAL_RESULT || cached_result_type == INT_RESULT) ?
(max(args[1]->max_length - args[1]->decimals,
args[2]->max_length - args[2]->decimals) + decimals +
(unsigned_flag ? 0 : 1) ) :
max(args[1]->max_length, args[2]->max_length);
2000-07-31 21:29:14 +02:00
}
uint Item_func_if::decimal_precision() const
{
int precision=(max(args[1]->decimal_int_part(),args[2]->decimal_int_part())+
decimals);
return min(precision, DECIMAL_MAX_PRECISION);
}
2000-07-31 21:29:14 +02:00
double
2004-11-11 21:39:35 +03:00
Item_func_if::val_real()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2005-02-09 02:50:45 +04:00
Item *arg= args[0]->val_bool() ? args[1] : args[2];
2004-11-11 21:39:35 +03:00
double value= arg->val_real();
2000-07-31 21:29:14 +02:00
null_value=arg->null_value;
return value;
}
longlong
Item_func_if::val_int()
{
DBUG_ASSERT(fixed == 1);
2005-02-09 02:50:45 +04:00
Item *arg= args[0]->val_bool() ? args[1] : args[2];
2000-07-31 21:29:14 +02:00
longlong value=arg->val_int();
null_value=arg->null_value;
return value;
}
String *
Item_func_if::val_str(String *str)
{
DBUG_ASSERT(fixed == 1);
2005-02-09 02:50:45 +04:00
Item *arg= args[0]->val_bool() ? args[1] : args[2];
2000-07-31 21:29:14 +02:00
String *res=arg->val_str(str);
if (res)
res->set_charset(collation.collation);
2000-07-31 21:29:14 +02:00
null_value=arg->null_value;
return res;
}
2005-02-09 02:50:45 +04:00
my_decimal *
Item_func_if::val_decimal(my_decimal *decimal_value)
{
DBUG_ASSERT(fixed == 1);
Item *arg= args[0]->val_bool() ? args[1] : args[2];
my_decimal *value= arg->val_decimal(decimal_value);
null_value= arg->null_value;
return value;
}
2000-07-31 21:29:14 +02:00
void
Item_func_nullif::fix_length_and_dec()
{
Item_bool_func2::fix_length_and_dec();
maybe_null=1;
if (args[0]) // Only false if EOM
{
max_length=args[0]->max_length;
decimals=args[0]->decimals;
unsigned_flag= args[0]->unsigned_flag;
cached_result_type= args[0]->result_type();
if (cached_result_type == STRING_RESULT &&
agg_arg_charsets(collation, args, arg_count, MY_COLL_CMP_CONV, 1))
return;
2000-07-31 21:29:14 +02:00
}
}
2005-02-09 02:50:45 +04:00
2000-07-31 21:29:14 +02:00
/*
nullif () returns NULL if arguments are equal, else it returns the
2000-07-31 21:29:14 +02:00
first argument.
Note that we have to evaluate the first argument twice as the compare
may have been done with a different type than return value
*/
double
2004-11-11 21:39:35 +03:00
Item_func_nullif::val_real()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
double value;
2004-03-17 10:36:12 +02:00
if (!cmp.compare())
2000-07-31 21:29:14 +02:00
{
null_value=1;
return 0.0;
}
2004-11-11 21:39:35 +03:00
value= args[0]->val_real();
2000-07-31 21:29:14 +02:00
null_value=args[0]->null_value;
return value;
}
longlong
Item_func_nullif::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
longlong value;
2004-03-17 10:36:12 +02:00
if (!cmp.compare())
2000-07-31 21:29:14 +02:00
{
null_value=1;
return 0;
}
value=args[0]->val_int();
null_value=args[0]->null_value;
return value;
}
String *
Item_func_nullif::val_str(String *str)
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
String *res;
2004-03-17 10:36:12 +02:00
if (!cmp.compare())
2000-07-31 21:29:14 +02:00
{
null_value=1;
return 0;
}
res=args[0]->val_str(str);
null_value=args[0]->null_value;
return res;
}
2005-02-09 02:50:45 +04:00
my_decimal *
Item_func_nullif::val_decimal(my_decimal * decimal_value)
{
DBUG_ASSERT(fixed == 1);
my_decimal *res;
if (!cmp.compare())
{
null_value=1;
return 0;
}
res= args[0]->val_decimal(decimal_value);
null_value= args[0]->null_value;
return res;
}
bool
Item_func_nullif::is_null()
{
return (null_value= (!cmp.compare() ? 1 : args[0]->null_value));
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
2000-07-31 21:29:14 +02:00
/*
Return the matching ITEM or NULL if all compares (including else) failed
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
SYNOPSIS
find_item()
str Buffer string
DESCRIPTION
Find and return matching items for CASE or ELSE item if all compares
are failed or NULL if ELSE item isn't defined.
IMPLEMENTATION
In order to do correct comparisons of the CASE expression (the expression
between CASE and the first WHEN) with each WHEN expression several
comparators are used. One for each result type. CASE expression can be
evaluated up to # of different result types are used. To check whether
the CASE expression already was evaluated for a particular result type
a bit mapped variable value_added_map is used. Result types are mapped
to it according to their int values i.e. STRING_RESULT is mapped to bit
0, REAL_RESULT to bit 1, so on.
RETURN
NULL - Nothing found and there is no ELSE expression defined
item - Found item or ELSE item if defined and all comparisons are
failed
2000-07-31 21:29:14 +02:00
*/
Item *Item_func_case::find_item(String *str)
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint value_added_map= 0;
2005-02-09 02:50:45 +04:00
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
if (first_expr_num == -1)
2000-07-31 21:29:14 +02:00
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
for (uint i=0 ; i < ncases ; i+=2)
2000-07-31 21:29:14 +02:00
{
2003-07-18 13:11:47 +05:00
// No expression between CASE and the first WHEN
2005-02-09 02:50:45 +04:00
if (args[i]->val_bool())
2000-07-31 21:29:14 +02:00
return args[i+1];
continue;
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
}
else
{
/* Compare every WHEN argument with it and return the first match */
for (uint i=0 ; i < ncases ; i+=2)
2005-02-09 02:50:45 +04:00
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
cmp_type= item_cmp_type(left_result_type, args[i]->result_type());
DBUG_ASSERT(cmp_type != ROW_RESULT);
DBUG_ASSERT(cmp_items[(uint)cmp_type]);
if (!(value_added_map & (1<<(uint)cmp_type)))
{
cmp_items[(uint)cmp_type]->store_value(args[first_expr_num]);
if ((null_value=args[first_expr_num]->null_value))
return else_expr_num != -1 ? args[else_expr_num] : 0;
value_added_map|= 1<<(uint)cmp_type;
}
if (!cmp_items[(uint)cmp_type]->cmp(args[i]) && !args[i]->null_value)
return args[i + 1];
2000-07-31 21:29:14 +02:00
}
}
// No, WHEN clauses all missed, return ELSE expression
return else_expr_num != -1 ? args[else_expr_num] : 0;
2000-07-31 21:29:14 +02:00
}
String *Item_func_case::val_str(String *str)
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
String *res;
Item *item=find_item(str);
if (!item)
{
null_value=1;
return 0;
}
2002-12-21 10:45:06 +02:00
null_value= 0;
2000-07-31 21:29:14 +02:00
if (!(res=item->val_str(str)))
2002-12-21 10:45:06 +02:00
null_value= 1;
2000-07-31 21:29:14 +02:00
return res;
}
longlong Item_func_case::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
char buff[MAX_FIELD_WIDTH];
String dummy_str(buff,sizeof(buff),default_charset());
2000-07-31 21:29:14 +02:00
Item *item=find_item(&dummy_str);
longlong res;
if (!item)
{
null_value=1;
return 0;
}
res=item->val_int();
null_value=item->null_value;
return res;
}
2004-11-11 21:39:35 +03:00
double Item_func_case::val_real()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
char buff[MAX_FIELD_WIDTH];
String dummy_str(buff,sizeof(buff),default_charset());
2000-07-31 21:29:14 +02:00
Item *item=find_item(&dummy_str);
double res;
if (!item)
{
null_value=1;
return 0;
}
2004-11-11 21:39:35 +03:00
res= item->val_real();
2000-07-31 21:29:14 +02:00
null_value=item->null_value;
return res;
}
2005-02-09 02:50:45 +04:00
my_decimal *Item_func_case::val_decimal(my_decimal *decimal_value)
{
DBUG_ASSERT(fixed == 1);
char buff[MAX_FIELD_WIDTH];
String dummy_str(buff, sizeof(buff), default_charset());
Item *item= find_item(&dummy_str);
my_decimal *res;
if (!item)
{
null_value=1;
return 0;
}
res= item->val_decimal(decimal_value);
null_value= item->null_value;
return res;
}
2005-07-04 16:01:04 +03:00
bool Item_func_case::fix_fields(THD *thd, Item **ref)
{
/*
buff should match stack usage from
Item_func_case::val_int() -> Item_func_case::find_item()
*/
char buff[MAX_FIELD_WIDTH*2+sizeof(String)*2+sizeof(String*)*2+sizeof(double)*2+sizeof(longlong)*2];
2005-07-04 16:01:04 +03:00
bool res= Item_func::fix_fields(thd, ref);
/*
Call check_stack_overrun after fix_fields to be sure that stack variable
is not optimized away
*/
if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
return TRUE; // Fatal error flag is set!
2005-07-04 16:01:04 +03:00
return res;
}
2000-07-31 21:29:14 +02:00
void Item_func_case::fix_length_and_dec()
{
Item **agg;
uint nagg;
THD *thd= current_thd;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint found_types= 0;
if (!(agg= (Item**) sql_alloc(sizeof(Item*)*(ncases+1))))
return;
/*
Aggregate all THEN and ELSE expression types
and collations when string result
*/
for (nagg= 0 ; nagg < ncases/2 ; nagg++)
agg[nagg]= args[nagg*2+1];
if (else_expr_num != -1)
agg[nagg++]= args[else_expr_num];
agg_result_type(&cached_result_type, agg, nagg);
if ((cached_result_type == STRING_RESULT) &&
agg_arg_charsets(collation, agg, nagg, MY_COLL_ALLOW_CONV, 1))
return;
/*
Aggregate first expression and all THEN expression types
and collations when string comparison
*/
if (first_expr_num != -1)
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint i;
agg[0]= args[first_expr_num];
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
left_result_type= agg[0]->result_type();
for (nagg= 0; nagg < ncases/2 ; nagg++)
agg[nagg+1]= args[nagg*2];
nagg++;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
found_types= collect_cmp_types(agg, nagg);
for (i= 0; i <= (uint)DECIMAL_RESULT; i++)
{
if (found_types & (1 << i) && !cmp_items[i])
{
DBUG_ASSERT((Item_result)i != ROW_RESULT);
if ((Item_result)i == STRING_RESULT &&
agg_arg_charsets(cmp_collation, agg, nagg, MY_COLL_CMP_CONV, 1))
return;
if (!(cmp_items[i]=
cmp_item::get_comparator((Item_result)i,
cmp_collation.collation)))
return;
}
}
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
if (else_expr_num == -1 || args[else_expr_num]->maybe_null)
maybe_null=1;
2000-07-31 21:29:14 +02:00
max_length=0;
decimals=0;
for (uint i=0 ; i < ncases ; i+=2)
2000-07-31 21:29:14 +02:00
{
set_if_bigger(max_length,args[i+1]->max_length);
set_if_bigger(decimals,args[i+1]->decimals);
}
if (else_expr_num != -1)
2000-07-31 21:29:14 +02:00
{
set_if_bigger(max_length,args[else_expr_num]->max_length);
set_if_bigger(decimals,args[else_expr_num]->decimals);
2000-07-31 21:29:14 +02:00
}
}
uint Item_func_case::decimal_precision() const
{
int max_int_part=0;
for (uint i=0 ; i < ncases ; i+=2)
set_if_bigger(max_int_part, args[i+1]->decimal_int_part());
if (else_expr_num != -1)
set_if_bigger(max_int_part, args[else_expr_num]->decimal_int_part());
return min(max_int_part + decimals, DECIMAL_MAX_PRECISION);
}
/* TODO: Fix this so that it prints the whole CASE expression */
2000-07-31 21:29:14 +02:00
void Item_func_case::print(String *str)
{
str->append(STRING_WITH_LEN("(case "));
if (first_expr_num != -1)
{
args[first_expr_num]->print(str);
str->append(' ');
}
for (uint i=0 ; i < ncases ; i+=2)
{
str->append(STRING_WITH_LEN("when "));
args[i]->print(str);
str->append(STRING_WITH_LEN(" then "));
args[i+1]->print(str);
str->append(' ');
}
if (else_expr_num != -1)
{
str->append(STRING_WITH_LEN("else "));
args[else_expr_num]->print(str);
str->append(' ');
}
str->append(STRING_WITH_LEN("end)"));
2000-07-31 21:29:14 +02:00
}
/*
Coalesce - return first not NULL argument.
2000-07-31 21:29:14 +02:00
*/
String *Item_func_coalesce::str_op(String *str)
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
String *res;
if ((res=args[i]->val_str(str)))
return res;
2000-07-31 21:29:14 +02:00
}
null_value=1;
return 0;
}
longlong Item_func_coalesce::int_op()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
longlong res=args[i]->val_int();
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
double Item_func_coalesce::real_op()
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
2004-11-11 21:39:35 +03:00
double res= args[i]->val_real();
2000-07-31 21:29:14 +02:00
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
my_decimal *Item_func_coalesce::decimal_op(my_decimal *decimal_value)
2005-02-09 02:50:45 +04:00
{
DBUG_ASSERT(fixed == 1);
null_value= 0;
for (uint i= 0; i < arg_count; i++)
{
my_decimal *res= args[i]->val_decimal(decimal_value);
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
2000-07-31 21:29:14 +02:00
void Item_func_coalesce::fix_length_and_dec()
{
agg_result_type(&hybrid_type, args, arg_count);
switch (hybrid_type) {
2005-02-09 02:50:45 +04:00
case STRING_RESULT:
count_only_length();
decimals= NOT_FIXED_DEC;
agg_arg_charsets(collation, args, arg_count, MY_COLL_ALLOW_CONV, 1);
2005-02-09 02:50:45 +04:00
break;
case DECIMAL_RESULT:
count_decimal_length();
break;
case REAL_RESULT:
count_real_length();
break;
case INT_RESULT:
count_only_length();
decimals= 0;
2005-02-09 02:50:45 +04:00
break;
case ROW_RESULT:
default:
2005-02-09 02:50:45 +04:00
DBUG_ASSERT(0);
}
2000-07-31 21:29:14 +02:00
}
/****************************************************************************
Classes and function for the IN operator
2000-07-31 21:29:14 +02:00
****************************************************************************/
static int cmp_longlong(void *cmp_arg, longlong *a,longlong *b)
2000-07-31 21:29:14 +02:00
{
return *a < *b ? -1 : *a == *b ? 0 : 1;
}
static int cmp_double(void *cmp_arg, double *a,double *b)
2000-07-31 21:29:14 +02:00
{
return *a < *b ? -1 : *a == *b ? 0 : 1;
}
2005-02-09 02:50:45 +04:00
static int cmp_row(void *cmp_arg, cmp_item_row *a, cmp_item_row *b)
{
return a->compare(b);
}
2005-02-09 02:50:45 +04:00
static int cmp_decimal(void *cmp_arg, my_decimal *a, my_decimal *b)
{
/*
We need call of fixing buffer pointer, because fast sort just copy
decimal buffers in memory and pointers left pointing on old buffer place
*/
a->fix_buffer_pointer();
b->fix_buffer_pointer();
return my_decimal_cmp(a, b);
}
2000-07-31 21:29:14 +02:00
int in_vector::find(Item *item)
{
byte *result=get_value(item);
if (!result || !used_count)
return 0; // Null value
uint start,end;
start=0; end=used_count-1;
while (start != end)
{
uint mid=(start+end+1)/2;
int res;
if ((res=(*compare)(collation, base+mid*size, result)) == 0)
2000-07-31 21:29:14 +02:00
return 1;
if (res < 0)
start=mid;
else
end=mid-1;
}
return (int) ((*compare)(collation, base+start*size, result) == 0);
2000-07-31 21:29:14 +02:00
}
in_string::in_string(uint elements,qsort2_cmp cmp_func, CHARSET_INFO *cs)
:in_vector(elements, sizeof(String), cmp_func, cs),
tmp(buff, sizeof(buff), &my_charset_bin)
2000-07-31 21:29:14 +02:00
{}
in_string::~in_string()
{
if (base)
{
2003-02-02 23:30:01 +02:00
// base was allocated with help of sql_alloc => following is OK
for (uint i=0 ; i < count ; i++)
((String*) base)[i].free();
}
2000-07-31 21:29:14 +02:00
}
void in_string::set(uint pos,Item *item)
{
String *str=((String*) base)+pos;
String *res=item->val_str(str);
if (res && res != str)
{
if (res->uses_buffer_owned_by(str))
res->copy();
2000-07-31 21:29:14 +02:00
*str= *res;
}
if (!str->charset())
{
CHARSET_INFO *cs;
if (!(cs= item->collation.collation))
cs= &my_charset_bin; // Should never happen for STR items
str->set_charset(cs);
}
2000-07-31 21:29:14 +02:00
}
2000-07-31 21:29:14 +02:00
byte *in_string::get_value(Item *item)
{
return (byte*) item->val_str(&tmp);
}
in_row::in_row(uint elements, Item * item)
{
base= (char*) new cmp_item_row[count= elements];
size= sizeof(cmp_item_row);
compare= (qsort2_cmp) cmp_row;
tmp.store_value(item);
/*
We need to reset these as otherwise we will call sort() with
uninitialized (even if not used) elements
*/
used_count= elements;
collation= 0;
}
in_row::~in_row()
{
if (base)
delete [] (cmp_item_row*) base;
}
byte *in_row::get_value(Item *item)
{
tmp.store_value(item);
if (item->is_null())
return 0;
return (byte *)&tmp;
}
void in_row::set(uint pos, Item *item)
{
DBUG_ENTER("in_row::set");
DBUG_PRINT("enter", ("pos %u item 0x%lx", pos, (ulong) item));
((cmp_item_row*) base)[pos].store_value_by_template(&tmp, item);
DBUG_VOID_RETURN;
}
2000-07-31 21:29:14 +02:00
in_longlong::in_longlong(uint elements)
:in_vector(elements,sizeof(longlong),(qsort2_cmp) cmp_longlong, 0)
2000-07-31 21:29:14 +02:00
{}
void in_longlong::set(uint pos,Item *item)
{
((longlong*) base)[pos]=item->val_int();
}
byte *in_longlong::get_value(Item *item)
{
tmp= item->val_int();
2000-07-31 21:29:14 +02:00
if (item->null_value)
return 0;
2000-07-31 21:29:14 +02:00
return (byte*) &tmp;
}
in_double::in_double(uint elements)
:in_vector(elements,sizeof(double),(qsort2_cmp) cmp_double, 0)
2000-07-31 21:29:14 +02:00
{}
void in_double::set(uint pos,Item *item)
{
2004-11-11 21:39:35 +03:00
((double*) base)[pos]= item->val_real();
2000-07-31 21:29:14 +02:00
}
byte *in_double::get_value(Item *item)
{
2004-11-11 21:39:35 +03:00
tmp= item->val_real();
2000-07-31 21:29:14 +02:00
if (item->null_value)
return 0; /* purecov: inspected */
2000-07-31 21:29:14 +02:00
return (byte*) &tmp;
}
2005-02-09 02:50:45 +04:00
in_decimal::in_decimal(uint elements)
:in_vector(elements, sizeof(my_decimal),(qsort2_cmp) cmp_decimal, 0)
{}
void in_decimal::set(uint pos, Item *item)
{
/* as far as 'item' is constant, we can store reference on my_decimal */
my_decimal *dec= ((my_decimal *)base) + pos;
dec->len= DECIMAL_BUFF_LENGTH;
dec->fix_buffer_pointer();
my_decimal *res= item->val_decimal(dec);
if (res != dec)
my_decimal2decimal(res, dec);
}
byte *in_decimal::get_value(Item *item)
{
my_decimal *result= item->val_decimal(&val);
if (item->null_value)
return 0;
return (byte *)result;
}
cmp_item* cmp_item::get_comparator(Item_result type,
CHARSET_INFO *cs)
{
2005-02-09 02:50:45 +04:00
switch (type) {
case STRING_RESULT:
2005-02-09 02:50:45 +04:00
return new cmp_item_sort_string(cs);
case INT_RESULT:
return new cmp_item_int;
case REAL_RESULT:
return new cmp_item_real;
case ROW_RESULT:
return new cmp_item_row;
2005-02-09 02:50:45 +04:00
case DECIMAL_RESULT:
return new cmp_item_decimal;
2003-01-31 14:07:07 +04:00
default:
DBUG_ASSERT(0);
break;
}
return 0; // to satisfy compiler :)
}
cmp_item* cmp_item_sort_string::make_same()
{
return new cmp_item_sort_string_in_static(cmp_charset);
}
cmp_item* cmp_item_int::make_same()
{
return new cmp_item_int();
}
cmp_item* cmp_item_real::make_same()
{
return new cmp_item_real();
}
cmp_item* cmp_item_row::make_same()
{
return new cmp_item_row();
}
cmp_item_row::~cmp_item_row()
{
DBUG_ENTER("~cmp_item_row");
DBUG_PRINT("enter",("this: 0x%lx", this));
if (comparators)
{
for (uint i= 0; i < n; i++)
{
if (comparators[i])
delete comparators[i];
}
}
DBUG_VOID_RETURN;
}
void cmp_item_row::store_value(Item *item)
{
DBUG_ENTER("cmp_item_row::store_value");
n= item->cols();
if (!comparators)
2003-11-20 14:31:10 +02:00
comparators= (cmp_item **) current_thd->calloc(sizeof(cmp_item *)*n);
if (comparators)
{
item->bring_value();
item->null_value= 0;
for (uint i=0; i < n; i++)
{
2003-11-20 14:31:10 +02:00
if (!comparators[i])
2005-02-09 02:50:45 +04:00
if (!(comparators[i]=
cmp_item::get_comparator(item->el(i)->result_type(),
item->el(i)->collation.collation)))
2003-11-20 14:31:10 +02:00
break; // new failed
comparators[i]->store_value(item->el(i));
item->null_value|= item->el(i)->null_value;
}
}
DBUG_VOID_RETURN;
}
void cmp_item_row::store_value_by_template(cmp_item *t, Item *item)
{
cmp_item_row *tmpl= (cmp_item_row*) t;
if (tmpl->n != item->cols())
{
2003-10-06 22:35:05 +03:00
my_error(ER_OPERAND_COLUMNS, MYF(0), tmpl->n);
return;
}
n= tmpl->n;
if ((comparators= (cmp_item **) sql_alloc(sizeof(cmp_item *)*n)))
{
item->bring_value();
item->null_value= 0;
for (uint i=0; i < n; i++)
{
if (!(comparators[i]= tmpl->comparators[i]->make_same()))
break; // new failed
comparators[i]->store_value_by_template(tmpl->comparators[i],
item->el(i));
item->null_value|= item->el(i)->null_value;
}
}
}
int cmp_item_row::cmp(Item *arg)
{
arg->null_value= 0;
if (arg->cols() != n)
{
2003-10-06 22:35:05 +03:00
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
return 1;
}
bool was_null= 0;
arg->bring_value();
for (uint i=0; i < n; i++)
{
if (comparators[i]->cmp(arg->el(i)))
{
if (!arg->el(i)->null_value)
return 1;
was_null= 1;
}
}
2002-12-12 20:34:16 +02:00
return (arg->null_value= was_null);
}
int cmp_item_row::compare(cmp_item *c)
{
cmp_item_row *cmp= (cmp_item_row *) c;
for (uint i=0; i < n; i++)
{
int res;
if ((res= comparators[i]->compare(cmp->comparators[i])))
return res;
}
return 0;
}
2000-07-31 21:29:14 +02:00
2005-02-09 02:50:45 +04:00
void cmp_item_decimal::store_value(Item *item)
{
my_decimal *val= item->val_decimal(&value);
2005-02-15 19:35:28 +02:00
/* val may be zero if item is nnull */
if (val && val != &value)
2005-02-09 02:50:45 +04:00
my_decimal2decimal(val, &value);
}
int cmp_item_decimal::cmp(Item *arg)
{
my_decimal tmp_buf, *tmp= arg->val_decimal(&tmp_buf);
if (arg->null_value)
return 1;
return my_decimal_cmp(&value, tmp);
}
2005-02-15 19:35:28 +02:00
int cmp_item_decimal::compare(cmp_item *arg)
2005-02-09 02:50:45 +04:00
{
2005-02-15 19:35:28 +02:00
cmp_item_decimal *cmp= (cmp_item_decimal*) arg;
2005-02-09 02:50:45 +04:00
return my_decimal_cmp(&value, &cmp->value);
}
cmp_item* cmp_item_decimal::make_same()
{
return new cmp_item_decimal();
}
bool Item_func_in::nulls_in_row()
{
Item **arg,**arg_end;
for (arg= args+1, arg_end= args+arg_count; arg != arg_end ; arg++)
{
if ((*arg)->null_inside())
return 1;
}
return 0;
}
/*
Perform context analysis of an IN item tree
SYNOPSIS:
fix_fields()
thd reference to the global context of the query thread
tables list of all open tables involved in the query
ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
DESCRIPTION
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_in as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
NOTES
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
T0(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
T1(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
T0(e NOT IN(e1,...,en)) = union(T1(e),union(T1(ei)))
T1(e NOT IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
RETURN
0 ok
1 got error
*/
bool
Item_func_in::fix_fields(THD *thd, Item **ref)
{
Item **arg, **arg_end;
if (Item_func_opt_neg::fix_fields(thd, ref))
return 1;
/* not_null_tables_cache == union(T1(e),union(T1(ei))) */
if (pred_level && negated)
return 0;
/* not_null_tables_cache = union(T1(e),intersection(T1(ei))) */
not_null_tables_cache= ~(table_map) 0;
for (arg= args + 1, arg_end= args + arg_count; arg != arg_end; arg++)
not_null_tables_cache&= (*arg)->not_null_tables();
not_null_tables_cache|= (*args)->not_null_tables();
return 0;
}
static int srtcmp_in(CHARSET_INFO *cs, const String *x,const String *y)
{
return cs->coll->strnncollsp(cs,
(uchar *) x->ptr(),x->length(),
(uchar *) y->ptr(),y->length(), 0);
}
2000-07-31 21:29:14 +02:00
void Item_func_in::fix_length_and_dec()
{
Item **arg, **arg_end;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
bool const_itm= 1;
THD *thd= current_thd;
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint found_types= 0;
uint type_cnt= 0, i;
left_result_type= args[0]->result_type();
found_types= collect_cmp_types(args, arg_count);
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
for (arg= args + 1, arg_end= args + arg_count; arg != arg_end ; arg++)
{
if (!arg[0]->const_item())
{
const_itm= 0;
break;
}
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
for (i= 0; i <= (uint)DECIMAL_RESULT; i++)
{
if (found_types & 1 << i)
(type_cnt)++;
}
/*
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
Row item with NULLs inside can return NULL or FALSE =>
they can't be processed as static
*/
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
if (type_cnt == 1 && const_itm && !nulls_in_row())
2000-07-31 21:29:14 +02:00
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint tmp_type;
Item_result cmp_type;
/* Only one cmp type was found. Extract it here */
for (tmp_type= 0; found_types - 1; found_types>>= 1)
tmp_type++;
cmp_type= (Item_result)tmp_type;
switch (cmp_type) {
2000-07-31 21:29:14 +02:00
case STRING_RESULT:
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
if (agg_arg_charsets(cmp_collation, args, arg_count, MY_COLL_CMP_CONV, 1))
return;
array=new in_string(arg_count - 1,(qsort2_cmp) srtcmp_in,
cmp_collation.collation);
2000-07-31 21:29:14 +02:00
break;
case INT_RESULT:
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
array= new in_longlong(arg_count - 1);
2000-07-31 21:29:14 +02:00
break;
case REAL_RESULT:
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
array= new in_double(arg_count - 1);
2000-07-31 21:29:14 +02:00
break;
2002-11-15 20:32:09 +02:00
case ROW_RESULT:
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
array= new in_row(arg_count - 1, args[0]);
2002-11-15 20:32:09 +02:00
break;
2005-02-09 02:50:45 +04:00
case DECIMAL_RESULT:
array= new in_decimal(arg_count - 1);
break;
2003-01-31 14:07:07 +04:00
default:
DBUG_ASSERT(0);
return;
2000-07-31 21:29:14 +02:00
}
if (array && !(thd->is_fatal_error)) // If not EOM
2000-07-31 21:29:14 +02:00
{
uint j=0;
2003-08-29 13:44:35 +03:00
for (uint i=1 ; i < arg_count ; i++)
{
array->set(j,args[i]);
if (!args[i]->null_value) // Skip NULL values
j++;
2003-08-29 13:44:35 +03:00
else
have_null= 1;
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
if ((array->used_count= j))
array->sort();
2000-07-31 21:29:14 +02:00
}
}
else
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
for (i= 0; i <= (uint) DECIMAL_RESULT; i++)
{
if (found_types & (1 << i) && !cmp_items[i])
{
if ((Item_result)i == STRING_RESULT &&
agg_arg_charsets(cmp_collation, args, arg_count, MY_COLL_CMP_CONV, 1))
return;
if (!(cmp_items[i]=
cmp_item::get_comparator((Item_result)i,
cmp_collation.collation)))
return;
}
}
2000-07-31 21:29:14 +02:00
}
maybe_null= args[0]->maybe_null;
max_length= 1;
2000-07-31 21:29:14 +02:00
}
void Item_func_in::print(String *str)
{
str->append('(');
args[0]->print(str);
2005-09-09 19:06:15 +04:00
if (negated)
str->append(STRING_WITH_LEN(" not"));
str->append(STRING_WITH_LEN(" in ("));
2003-11-03 12:28:36 +02:00
print_args(str, 1);
str->append(STRING_WITH_LEN("))"));
2000-07-31 21:29:14 +02:00
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
/*
Evaluate the function and return its value.
SYNOPSIS
val_int()
DESCRIPTION
Evaluate the function and return its value.
IMPLEMENTATION
If the array object is defined then the value of the function is
calculated by means of this array.
Otherwise several cmp_item objects are used in order to do correct
comparison of left expression and an expression from the values list.
One cmp_item object correspond to one used comparison type. Left
expression can be evaluated up to number of different used comparison
types. A bit mapped variable value_added_map is used to check whether
the left expression already was evaluated for a particular result type.
Result types are mapped to it according to their integer values i.e.
STRING_RESULT is mapped to bit 0, REAL_RESULT to bit 1, so on.
RETURN
Value of the function
*/
2000-07-31 21:29:14 +02:00
longlong Item_func_in::val_int()
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
cmp_item *in_item;
DBUG_ASSERT(fixed == 1);
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
uint value_added_map= 0;
2000-07-31 21:29:14 +02:00
if (array)
{
int tmp=array->find(args[0]);
null_value=args[0]->null_value || (!tmp && have_null);
return (longlong) (!null_value && tmp != negated);
2000-07-31 21:29:14 +02:00
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
for (uint i= 1 ; i < arg_count ; i++)
2000-07-31 21:29:14 +02:00
{
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
Item_result cmp_type= item_cmp_type(left_result_type, args[i]->result_type());
in_item= cmp_items[(uint)cmp_type];
DBUG_ASSERT(in_item);
if (!(value_added_map & (1 << (uint)cmp_type)))
{
in_item->store_value(args[0]);
if ((null_value=args[0]->null_value))
return 0;
have_null= 0;
value_added_map|= 1 << (uint)cmp_type;
}
2000-07-31 21:29:14 +02:00
if (!in_item->cmp(args[i]) && !args[i]->null_value)
return (longlong) (!negated);
have_null|= args[i]->null_value;
2000-07-31 21:29:14 +02:00
}
Fixed bug #18360: Type aggregation for IN and CASE may lead to a wrong result The IN function aggregates result types of all expressions. It uses that type in comparison of left expression and expressions in right part. This approach works in most cases. But let's consider the case when the right part contains both strings and integers. In that case this approach may cause wrong results because all strings which do not start with a digit are evaluated as 0. CASE uses the same approach when a CASE expression is given thus it's also affected. The idea behind this fix is to make IN function to compare expressions with different result types differently. For example a string in the left part will be compared as string with strings specified in right part and will be converted to real for comparison to int or real items in the right part. A new function called collect_cmp_types() is added. It collects different result types for comparison of first item in the provided list with each other item in the list. The Item_func_in class now can refer up to 5 cmp_item objects: 1 for each result type for comparison purposes. cmp_item objects are allocated according to found result types. The comparison of the left expression with any right part expression is now based only on result types of these expressions. The Item_func_case class is modified in the similar way when a CASE expression is specified. Now it can allocate up to 5 cmp_item objects to compare CASE expression with WHEN expressions of different types. The comparison of the CASE expression with any WHEN expression now based only on result types of these expressions.
2006-09-26 20:52:54 +04:00
null_value= have_null;
return (longlong) (!null_value && negated);
2000-07-31 21:29:14 +02:00
}
longlong Item_func_bit_or::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
ulonglong arg1= (ulonglong) args[0]->val_int();
if (args[0]->null_value)
{
null_value=1; /* purecov: inspected */
return 0; /* purecov: inspected */
}
ulonglong arg2= (ulonglong) args[1]->val_int();
if (args[1]->null_value)
{
null_value=1;
return 0;
}
null_value=0;
return (longlong) (arg1 | arg2);
}
longlong Item_func_bit_and::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
ulonglong arg1= (ulonglong) args[0]->val_int();
if (args[0]->null_value)
{
null_value=1; /* purecov: inspected */
return 0; /* purecov: inspected */
}
ulonglong arg2= (ulonglong) args[1]->val_int();
if (args[1]->null_value)
{
null_value=1; /* purecov: inspected */
return 0; /* purecov: inspected */
}
null_value=0;
return (longlong) (arg1 & arg2);
}
Item_cond::Item_cond(THD *thd, Item_cond *item)
:Item_bool_func(thd, item),
abort_on_null(item->abort_on_null),
and_tables_cache(item->and_tables_cache)
{
/*
item->list will be copied by copy_andor_arguments() call
*/
}
void Item_cond::copy_andor_arguments(THD *thd, Item_cond *item)
{
List_iterator_fast<Item> li(item->list);
while (Item *it= li++)
list.push_back(it->copy_andor_structure(thd));
}
2000-07-31 21:29:14 +02:00
2000-07-31 21:29:14 +02:00
bool
Item_cond::fix_fields(THD *thd, Item **ref)
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 0);
2000-07-31 21:29:14 +02:00
List_iterator<Item> li(list);
Item *item;
#ifndef EMBEDDED_LIBRARY
2000-07-31 21:29:14 +02:00
char buff[sizeof(char*)]; // Max local vars in function
#endif
not_null_tables_cache= used_tables_cache= 0;
const_item_cache= 1;
/*
and_table_cache is the value that Item_cond_or() returns for
not_null_tables()
*/
and_tables_cache= ~(table_map) 0;
2000-07-31 21:29:14 +02:00
if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
return TRUE; // Fatal error flag is set!
/*
The following optimization reduces the depth of an AND-OR tree.
E.g. a WHERE clause like
F1 AND (F2 AND (F2 AND F4))
is parsed into a tree with the same nested structure as defined
by braces. This optimization will transform such tree into
AND (F1, F2, F3, F4).
Trees of OR items are flattened as well:
((F1 OR F2) OR (F3 OR F4)) => OR (F1, F2, F3, F4)
Items for removed AND/OR levels will dangle until the death of the
entire statement.
The optimization is currently prepared statements and stored procedures
friendly as it doesn't allocate any memory and its effects are durable
(i.e. do not depend on PS/SP arguments).
*/
2000-07-31 21:29:14 +02:00
while ((item=li++))
{
table_map tmp_table_map;
2000-07-31 21:29:14 +02:00
while (item->type() == Item::COND_ITEM &&
((Item_cond*) item)->functype() == functype() &&
!((Item_cond*) item)->list.is_empty())
2000-07-31 21:29:14 +02:00
{ // Identical function
li.replace(((Item_cond*) item)->list);
((Item_cond*) item)->list.empty();
item= *li.ref(); // new current item
}
if (abort_on_null)
item->top_level_item();
// item can be substituted in fix_fields
if ((!item->fixed &&
item->fix_fields(thd, li.ref())) ||
(item= *li.ref())->check_cols(1))
return TRUE; /* purecov: inspected */
used_tables_cache|= item->used_tables();
if (item->const_item())
and_tables_cache= (table_map) 0;
else
{
tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
and_tables_cache&= tmp_table_map;
const_item_cache= FALSE;
}
with_sum_func= with_sum_func || item->with_sum_func;
with_subselect|= item->with_subselect;
if (item->maybe_null)
maybe_null=1;
2000-07-31 21:29:14 +02:00
}
thd->lex->current_select->cond_count+= list.elements;
2000-07-31 21:29:14 +02:00
fix_length_and_dec();
fixed= 1;
return FALSE;
2000-07-31 21:29:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bool Item_cond::walk(Item_processor processor, bool walk_subquery, byte *arg)
{
List_iterator_fast<Item> li(list);
Item *item;
while ((item= li++))
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if (item->walk(processor, walk_subquery, arg))
return 1;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
return Item_func::walk(processor, walk_subquery, arg);
}
/*
Transform an Item_cond object with a transformer callback function
SYNOPSIS
transform()
transformer the transformer callback function to be applied to the nodes
of the tree of the object
arg parameter to be passed to the transformer
DESCRIPTION
The function recursively applies the transform method to each
member item of the condition list.
If the call of the method for a member item returns a new item
the old item is substituted for a new one.
After this the transformer is applied to the root node
of the Item_cond object.
RETURN VALUES
Item returned as the result of transformation of the root node
*/
Item *Item_cond::transform(Item_transformer transformer, byte *arg)
{
DBUG_ASSERT(!current_thd->is_stmt_prepare());
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
{
Item *new_item= item->transform(transformer, arg);
if (!new_item)
return 0;
/*
THD::change_item_tree() should be called only if the tree was
really transformed, i.e. when a new item has been created.
Otherwise we'll be allocating a lot of unnecessary memory for
change records at each execution.
*/
if (new_item != item)
current_thd->change_item_tree(li.ref(), new_item);
}
return Item_func::transform(transformer, arg);
}
/*
Compile Item_cond object with a processor and a transformer callback functions
SYNOPSIS
compile()
analyzer the analyzer callback function to be applied to the nodes
of the tree of the object
arg_p in/out parameter to be passed to the analyzer
transformer the transformer callback function to be applied to the nodes
of the tree of the object
arg_t parameter to be passed to the transformer
DESCRIPTION
First the function applies the analyzer to the root node of
the Item_func object. Then if the analyzer succeeeds (returns TRUE)
the function recursively applies the compile method to member
item of the condition list.
If the call of the method for a member item returns a new item
the old item is substituted for a new one.
After this the transformer is applied to the root node
of the Item_cond object.
RETURN VALUES
Item returned as the result of transformation of the root node
*/
Item *Item_cond::compile(Item_analyzer analyzer, byte **arg_p,
Item_transformer transformer, byte *arg_t)
{
if (!(this->*analyzer)(arg_p))
return 0;
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
{
/*
The same parameter value of arg_p must be passed
to analyze any argument of the condition formula.
*/
byte *arg_v= *arg_p;
Item *new_item= item->compile(analyzer, &arg_v, transformer, arg_t);
if (new_item && new_item != item)
li.replace(new_item);
}
return Item_func::transform(transformer, arg_t);
}
void Item_cond::traverse_cond(Cond_traverser traverser,
void *arg, traverse_order order)
2004-12-17 21:13:22 +01:00
{
List_iterator<Item> li(list);
Item *item;
switch(order) {
case(PREFIX):
(*traverser)(this, arg);
while ((item= li++))
{
item->traverse_cond(traverser, arg, order);
}
(*traverser)(NULL, arg);
break;
case(POSTFIX):
while ((item= li++))
{
item->traverse_cond(traverser, arg, order);
}
(*traverser)(this, arg);
2004-12-17 21:13:22 +01:00
}
}
/*
Move SUM items out from item tree and replace with reference
SYNOPSIS
split_sum_func()
thd Thread handler
ref_pointer_array Pointer to array of reference fields
fields All fields in select
NOTES
This function is run on all expression (SELECT list, WHERE, HAVING etc)
that have or refer (HAVING) to a SUM expression.
The split is done to get an unique item for each SUM function
so that we can easily find and calculate them.
(Calculation done by update_sum_func() and copy_sum_funcs() in
sql_select.cc)
*/
void Item_cond::split_sum_func(THD *thd, Item **ref_pointer_array,
List<Item> &fields)
2000-07-31 21:29:14 +02:00
{
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
item->split_sum_func2(thd, ref_pointer_array, fields, li.ref(), TRUE);
2000-07-31 21:29:14 +02:00
}
table_map
Item_cond::used_tables() const
{ // This caches used_tables
return used_tables_cache;
}
2000-07-31 21:29:14 +02:00
void Item_cond::update_used_tables()
{
List_iterator_fast<Item> li(list);
2000-07-31 21:29:14 +02:00
Item *item;
used_tables_cache=0;
const_item_cache=1;
2000-07-31 21:29:14 +02:00
while ((item=li++))
{
item->update_used_tables();
used_tables_cache|= item->used_tables();
const_item_cache&= item->const_item();
2000-07-31 21:29:14 +02:00
}
}
void Item_cond::print(String *str)
{
str->append('(');
List_iterator_fast<Item> li(list);
2000-07-31 21:29:14 +02:00
Item *item;
if ((item=li++))
item->print(str);
while ((item=li++))
{
str->append(' ');
str->append(func_name());
str->append(' ');
item->print(str);
}
str->append(')');
}
void Item_cond::neg_arguments(THD *thd)
{
List_iterator<Item> li(list);
Item *item;
while ((item= li++)) /* Apply not transformation to the arguments */
{
Item *new_item= item->neg_transformer(thd);
if (!new_item)
{
2004-03-25 22:11:22 +02:00
if (!(new_item= new Item_func_not(item)))
return; // Fatal OEM error
}
VOID(li.replace(new_item));
}
}
/*
2005-02-09 02:50:45 +04:00
Evaluation of AND(expr, expr, expr ...)
NOTES:
abort_if_null is set for AND expressions for which we don't care if the
result is NULL or 0. This is set for:
- WHERE clause
- HAVING clause
- IF(expression)
RETURN VALUES
1 If all expressions are true
0 If all expressions are false or if we find a NULL expression and
'abort_on_null' is set.
NULL if all expression are either 1 or NULL
*/
2000-07-31 21:29:14 +02:00
longlong Item_cond_and::val_int()
{
DBUG_ASSERT(fixed == 1);
List_iterator_fast<Item> li(list);
2000-07-31 21:29:14 +02:00
Item *item;
null_value= 0;
2000-07-31 21:29:14 +02:00
while ((item=li++))
{
2005-02-09 02:50:45 +04:00
if (!item->val_bool())
2000-07-31 21:29:14 +02:00
{
if (abort_on_null || !(null_value= item->null_value))
return 0; // return FALSE
2000-07-31 21:29:14 +02:00
}
}
return null_value ? 0 : 1;
2000-07-31 21:29:14 +02:00
}
2000-07-31 21:29:14 +02:00
longlong Item_cond_or::val_int()
{
DBUG_ASSERT(fixed == 1);
List_iterator_fast<Item> li(list);
2000-07-31 21:29:14 +02:00
Item *item;
null_value=0;
while ((item=li++))
{
2005-02-09 02:50:45 +04:00
if (item->val_bool())
2000-07-31 21:29:14 +02:00
{
null_value=0;
return 1;
}
if (item->null_value)
null_value=1;
}
return 0;
}
/*
Create an AND expression from two expressions
SYNOPSIS
and_expressions()
a expression or NULL
b expression.
org_item Don't modify a if a == *org_item
If a == NULL, org_item is set to point at b,
to ensure that future calls will not modify b.
NOTES
This will not modify item pointed to by org_item or b
The idea is that one can call this in a loop and create and
'and' over all items without modifying any of the original items.
RETURN
NULL Error
Item
*/
Item *and_expressions(Item *a, Item *b, Item **org_item)
{
if (!a)
return (*org_item= (Item*) b);
if (a == *org_item)
{
Item_cond *res;
if ((res= new Item_cond_and(a, (Item*) b)))
{
res->used_tables_cache= a->used_tables() | b->used_tables();
res->not_null_tables_cache= a->not_null_tables() | b->not_null_tables();
}
return res;
}
if (((Item_cond_and*) a)->add((Item*) b))
return 0;
((Item_cond_and*) a)->used_tables_cache|= b->used_tables();
((Item_cond_and*) a)->not_null_tables_cache|= b->not_null_tables();
return a;
}
2000-07-31 21:29:14 +02:00
longlong Item_func_isnull::val_int()
{
DBUG_ASSERT(fixed == 1);
/*
Handle optimization if the argument can't be null
This has to be here because of the test in update_used_tables().
*/
if (!used_tables_cache)
2002-05-07 19:08:56 +03:00
return cached_value;
return args[0]->is_null() ? 1: 0;
2000-07-31 21:29:14 +02:00
}
longlong Item_is_not_null_test::val_int()
{
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_is_not_null_test::val_int");
if (!used_tables_cache)
{
owner->was_null|= (!cached_value);
DBUG_PRINT("info", ("cached :%d", cached_value));
DBUG_RETURN(cached_value);
}
if (args[0]->is_null())
{
DBUG_PRINT("info", ("null"));
owner->was_null|= 1;
DBUG_RETURN(0);
}
else
DBUG_RETURN(1);
}
/* Optimize case of not_null_column IS NULL */
void Item_is_not_null_test::update_used_tables()
{
if (!args[0]->maybe_null)
{
used_tables_cache= 0; /* is always true */
cached_value= (longlong) 1;
}
else
{
args[0]->update_used_tables();
if (!(used_tables_cache=args[0]->used_tables()))
{
/* Remember if the value is always NULL or never NULL */
cached_value= (longlong) !args[0]->is_null();
}
}
}
2000-07-31 21:29:14 +02:00
longlong Item_func_isnotnull::val_int()
{
DBUG_ASSERT(fixed == 1);
return args[0]->is_null() ? 0 : 1;
2000-07-31 21:29:14 +02:00
}
void Item_func_isnotnull::print(String *str)
{
str->append('(');
args[0]->print(str);
str->append(STRING_WITH_LEN(" is not null)"));
}
2000-07-31 21:29:14 +02:00
longlong Item_func_like::val_int()
{
DBUG_ASSERT(fixed == 1);
String* res = args[0]->val_str(&tmp_value1);
2000-07-31 21:29:14 +02:00
if (args[0]->null_value)
{
null_value=1;
return 0;
}
String* res2 = args[1]->val_str(&tmp_value2);
2000-07-31 21:29:14 +02:00
if (args[1]->null_value)
{
null_value=1;
return 0;
}
null_value=0;
if (canDoTurboBM)
return turboBM_matches(res->ptr(), res->length()) ? 1 : 0;
return my_wildcmp(cmp.cmp_collation.collation,
res->ptr(),res->ptr()+res->length(),
res2->ptr(),res2->ptr()+res2->length(),
escape,wild_one,wild_many) ? 0 : 1;
2000-07-31 21:29:14 +02:00
}
/* We can optimize a where if first character isn't a wildcard */
Item_func::optimize_type Item_func_like::select_optimize() const
{
if (args[1]->const_item())
2000-07-31 21:29:14 +02:00
{
String* res2= args[1]->val_str((String *)&tmp_value2);
if (!res2)
return OPTIMIZE_NONE;
if (*res2->ptr() != wild_many)
2000-07-31 21:29:14 +02:00
{
if (args[0]->result_type() != STRING_RESULT || *res2->ptr() != wild_one)
2000-07-31 21:29:14 +02:00
return OPTIMIZE_OP;
}
}
return OPTIMIZE_NONE;
}
bool Item_func_like::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
if (Item_bool_func2::fix_fields(thd, ref) ||
escape_item->fix_fields(thd, &escape_item))
return TRUE;
if (!escape_item->const_during_execution())
{
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
return TRUE;
}
if (escape_item->const_item())
{
/* If we are on execution stage */
String *escape_str= escape_item->val_str(&tmp_value1);
if (escape_str)
{
if (escape_used_in_parsing && (
(((thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) &&
escape_str->numchars() != 1) ||
escape_str->numchars() > 1)))
{
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
return TRUE;
}
2005-10-05 17:33:39 +05:00
if (use_mb(cmp.cmp_collation.collation))
{
CHARSET_INFO *cs= escape_str->charset();
my_wc_t wc;
int rc= cs->cset->mb_wc(cs, &wc,
(const uchar*) escape_str->ptr(),
(const uchar*) escape_str->ptr() +
escape_str->length());
escape= (int) (rc > 0 ? wc : '\\');
}
else
{
/*
In the case of 8bit character set, we pass native
code instead of Unicode code as "escape" argument.
Convert to "cs" if charset of escape differs.
*/
2005-10-06 15:26:59 +05:00
CHARSET_INFO *cs= cmp.cmp_collation.collation;
uint32 unused;
if (escape_str->needs_conversion(escape_str->length(),
escape_str->charset(), cs, &unused))
{
char ch;
uint errors;
uint32 cnvlen= copy_and_convert(&ch, 1, cs, escape_str->ptr(),
escape_str->length(),
escape_str->charset(), &errors);
escape= cnvlen ? ch : '\\';
}
else
escape= *(escape_str->ptr());
}
}
else
escape= '\\';
2005-08-16 20:54:53 +02:00
/*
We could also do boyer-more for non-const items, but as we would have to
recompute the tables for each row it's not worth it.
*/
if (args[1]->const_item() && !use_strnxfrm(collation.collation) &&
!(specialflag & SPECIAL_NO_NEW_FUNC))
{
String* res2 = args[1]->val_str(&tmp_value2);
if (!res2)
return FALSE; // Null argument
const size_t len = res2->length();
const char* first = res2->ptr();
const char* last = first + len - 1;
/*
len must be > 2 ('%pattern%')
heuristic: only do TurboBM for pattern_len > 2
*/
if (len > MIN_TURBOBM_PATTERN_LEN + 2 &&
*first == wild_many &&
*last == wild_many)
{
const char* tmp = first + 1;
for (; *tmp != wild_many && *tmp != wild_one && *tmp != escape; tmp++) ;
canDoTurboBM = (tmp == last) && !use_mb(args[0]->collation.collation);
}
if (canDoTurboBM)
{
pattern = first + 1;
pattern_len = (int) len - 2;
DBUG_PRINT("info", ("Initializing pattern: '%s'", first));
int *suff = (int*) thd->alloc((int) (sizeof(int)*
((pattern_len + 1)*2+
alphabet_size)));
bmGs = suff + pattern_len + 1;
bmBc = bmGs + pattern_len + 1;
turboBM_compute_good_suffix_shifts(suff);
turboBM_compute_bad_character_shifts();
DBUG_PRINT("info",("done"));
}
}
}
return FALSE;
}
void Item_func_like::cleanup()
{
canDoTurboBM= FALSE;
Item_bool_func2::cleanup();
}
2000-07-31 21:29:14 +02:00
#ifdef USE_REGEX
bool
Item_func_regex::fix_fields(THD *thd, Item **ref)
2000-07-31 21:29:14 +02:00
{
DBUG_ASSERT(fixed == 0);
if ((!args[0]->fixed &&
args[0]->fix_fields(thd, args)) || args[0]->check_cols(1) ||
2005-02-09 02:50:45 +04:00
(!args[1]->fixed &&
args[1]->fix_fields(thd, args + 1)) || args[1]->check_cols(1))
return TRUE; /* purecov: inspected */
2000-07-31 21:29:14 +02:00
with_sum_func=args[0]->with_sum_func || args[1]->with_sum_func;
max_length= 1;
decimals= 0;
if (agg_arg_charsets(cmp_collation, args, 2, MY_COLL_CMP_CONV, 1))
return TRUE;
2000-07-31 21:29:14 +02:00
used_tables_cache=args[0]->used_tables() | args[1]->used_tables();
not_null_tables_cache= (args[0]->not_null_tables() |
args[1]->not_null_tables());
2000-07-31 21:29:14 +02:00
const_item_cache=args[0]->const_item() && args[1]->const_item();
if (!regex_compiled && args[1]->const_item())
{
char buff[MAX_FIELD_WIDTH];
String tmp(buff,sizeof(buff),&my_charset_bin);
2000-07-31 21:29:14 +02:00
String *res=args[1]->val_str(&tmp);
if (args[1]->null_value)
{ // Will always return NULL
maybe_null=1;
return FALSE;
2000-07-31 21:29:14 +02:00
}
int error;
if ((error= my_regcomp(&preg,res->c_ptr(),
((cmp_collation.collation->state &
(MY_CS_BINSORT | MY_CS_CSSORT)) ?
REG_EXTENDED | REG_NOSUB :
REG_EXTENDED | REG_NOSUB | REG_ICASE),
cmp_collation.collation)))
2000-07-31 21:29:14 +02:00
{
(void) my_regerror(error,&preg,buff,sizeof(buff));
my_error(ER_REGEXP_ERROR, MYF(0), buff);
return TRUE;
2000-07-31 21:29:14 +02:00
}
regex_compiled=regex_is_const=1;
maybe_null=args[0]->maybe_null;
}
else
maybe_null=1;
fixed= 1;
return FALSE;
2000-07-31 21:29:14 +02:00
}
2000-07-31 21:29:14 +02:00
longlong Item_func_regex::val_int()
{
DBUG_ASSERT(fixed == 1);
2000-07-31 21:29:14 +02:00
char buff[MAX_FIELD_WIDTH];
String *res, tmp(buff,sizeof(buff),&my_charset_bin);
2000-07-31 21:29:14 +02:00
res=args[0]->val_str(&tmp);
if (args[0]->null_value)
{
null_value=1;
return 0;
}
if (!regex_is_const)
{
char buff2[MAX_FIELD_WIDTH];
String *res2, tmp2(buff2,sizeof(buff2),&my_charset_bin);
2000-07-31 21:29:14 +02:00
res2= args[1]->val_str(&tmp2);
if (args[1]->null_value)
{
null_value=1;
return 0;
}
if (!regex_compiled || stringcmp(res2,&prev_regexp))
2000-07-31 21:29:14 +02:00
{
prev_regexp.copy(*res2);
if (regex_compiled)
{
my_regfree(&preg);
2000-07-31 21:29:14 +02:00
regex_compiled=0;
}
2005-09-29 03:20:31 +02:00
if (my_regcomp(&preg,res2->c_ptr_safe(),
((cmp_collation.collation->state &
(MY_CS_BINSORT | MY_CS_CSSORT)) ?
REG_EXTENDED | REG_NOSUB :
REG_EXTENDED | REG_NOSUB | REG_ICASE),
cmp_collation.collation))
2000-07-31 21:29:14 +02:00
{
null_value=1;
return 0;
}
regex_compiled=1;
}
}
null_value=0;
return my_regexec(&preg,res->c_ptr_safe(),0,(my_regmatch_t*) 0,0) ? 0 : 1;
2000-07-31 21:29:14 +02:00
}
void Item_func_regex::cleanup()
2000-07-31 21:29:14 +02:00
{
DBUG_ENTER("Item_func_regex::cleanup");
Item_bool_func::cleanup();
2000-07-31 21:29:14 +02:00
if (regex_compiled)
{
my_regfree(&preg);
2000-07-31 21:29:14 +02:00
regex_compiled=0;
}
DBUG_VOID_RETURN;
2000-07-31 21:29:14 +02:00
}
2000-07-31 21:29:14 +02:00
#endif /* USE_REGEX */
#ifdef LIKE_CMP_TOUPPER
#define likeconv(cs,A) (uchar) (cs)->toupper(A)
#else
#define likeconv(cs,A) (uchar) (cs)->sort_order[(uchar) (A)]
#endif
/**********************************************************************
turboBM_compute_suffixes()
Precomputation dependent only on pattern_len.
**********************************************************************/
void Item_func_like::turboBM_compute_suffixes(int *suff)
{
const int plm1 = pattern_len - 1;
int f = 0;
int g = plm1;
int *const splm1 = suff + plm1;
CHARSET_INFO *cs= cmp.cmp_collation.collation;
*splm1 = pattern_len;
if (!cs->sort_order)
{
int i;
for (i = pattern_len - 2; i >= 0; i--)
{
int tmp = *(splm1 + i - f);
if (g < i && tmp < i - g)
suff[i] = tmp;
else
{
if (i < g)
g = i; // g = min(i, g)
f = i;
while (g >= 0 && pattern[g] == pattern[g + plm1 - f])
g--;
suff[i] = f - g;
}
}
}
else
{
int i;
for (i = pattern_len - 2; 0 <= i; --i)
{
int tmp = *(splm1 + i - f);
if (g < i && tmp < i - g)
suff[i] = tmp;
else
{
if (i < g)
g = i; // g = min(i, g)
f = i;
while (g >= 0 &&
2003-01-18 03:13:37 +02:00
likeconv(cs, pattern[g]) == likeconv(cs, pattern[g + plm1 - f]))
g--;
suff[i] = f - g;
}
}
}
}
/**********************************************************************
turboBM_compute_good_suffix_shifts()
Precomputation dependent only on pattern_len.
**********************************************************************/
void Item_func_like::turboBM_compute_good_suffix_shifts(int *suff)
{
turboBM_compute_suffixes(suff);
int *end = bmGs + pattern_len;
int *k;
for (k = bmGs; k < end; k++)
*k = pattern_len;
int tmp;
int i;
int j = 0;
const int plm1 = pattern_len - 1;
for (i = plm1; i > -1; i--)
{
if (suff[i] == i + 1)
{
for (tmp = plm1 - i; j < tmp; j++)
{
int *tmp2 = bmGs + j;
if (*tmp2 == pattern_len)
*tmp2 = tmp;
}
}
}
int *tmp2;
for (tmp = plm1 - i; j < tmp; j++)
{
tmp2 = bmGs + j;
if (*tmp2 == pattern_len)
*tmp2 = tmp;
}
tmp2 = bmGs + plm1;
for (i = 0; i <= pattern_len - 2; i++)
*(tmp2 - suff[i]) = plm1 - i;
}
/**********************************************************************
turboBM_compute_bad_character_shifts()
Precomputation dependent on pattern_len.
**********************************************************************/
void Item_func_like::turboBM_compute_bad_character_shifts()
{
int *i;
int *end = bmBc + alphabet_size;
int j;
const int plm1 = pattern_len - 1;
CHARSET_INFO *cs= cmp.cmp_collation.collation;
for (i = bmBc; i < end; i++)
*i = pattern_len;
if (!cs->sort_order)
{
for (j = 0; j < plm1; j++)
bmBc[(uint) (uchar) pattern[j]] = plm1 - j;
}
else
{
for (j = 0; j < plm1; j++)
2003-01-18 03:13:37 +02:00
bmBc[(uint) likeconv(cs,pattern[j])] = plm1 - j;
}
}
/**********************************************************************
turboBM_matches()
Search for pattern in text, returns true/false for match/no match
**********************************************************************/
bool Item_func_like::turboBM_matches(const char* text, int text_len) const
{
register int bcShift;
register int turboShift;
int shift = pattern_len;
int j = 0;
int u = 0;
CHARSET_INFO *cs= cmp.cmp_collation.collation;
const int plm1= pattern_len - 1;
const int tlmpl= text_len - pattern_len;
/* Searching */
if (!cs->sort_order)
{
while (j <= tlmpl)
{
register int i= plm1;
while (i >= 0 && pattern[i] == text[i + j])
{
i--;
if (i == plm1 - shift)
i-= u;
}
if (i < 0)
return 1;
register const int v = plm1 - i;
turboShift = u - v;
bcShift = bmBc[(uint) (uchar) text[i + j]] - plm1 + i;
shift = max(turboShift, bcShift);
shift = max(shift, bmGs[i]);
if (shift == bmGs[i])
u = min(pattern_len - shift, v);
else
{
if (turboShift < bcShift)
shift = max(shift, u + 1);
u = 0;
}
j+= shift;
}
return 0;
}
else
{
while (j <= tlmpl)
{
register int i = plm1;
while (i >= 0 && likeconv(cs,pattern[i]) == likeconv(cs,text[i + j]))
{
i--;
if (i == plm1 - shift)
i-= u;
}
if (i < 0)
return 1;
register const int v = plm1 - i;
turboShift = u - v;
2003-01-18 03:13:37 +02:00
bcShift = bmBc[(uint) likeconv(cs, text[i + j])] - plm1 + i;
shift = max(turboShift, bcShift);
shift = max(shift, bmGs[i]);
if (shift == bmGs[i])
u = min(pattern_len - shift, v);
else
{
if (turboShift < bcShift)
shift = max(shift, u + 1);
u = 0;
}
j+= shift;
}
return 0;
}
}
/*
Make a logical XOR of the arguments.
SYNOPSIS
val_int()
DESCRIPTION
If either operator is NULL, return NULL.
NOTE
As we don't do any index optimization on XOR this is not going to be
very fast to use.
TODO (low priority)
Change this to be optimized as:
A XOR B -> (A) == 1 AND (B) <> 1) OR (A <> 1 AND (B) == 1)
To be able to do this, we would however first have to extend the MySQL
range optimizer to handle OR better.
*/
longlong Item_cond_xor::val_int()
{
DBUG_ASSERT(fixed == 1);
List_iterator<Item> li(list);
Item *item;
int result=0;
null_value=0;
while ((item=li++))
{
result^= (item->val_int() != 0);
if (item->null_value)
{
null_value=1;
return 0;
}
}
return (longlong) result;
}
/*
Apply NOT transformation to the item and return a new one.
2005-02-09 02:50:45 +04:00
SYNOPSIS
neg_transformer()
thd thread handler
DESCRIPTION
Transform the item using next rules:
a AND b AND ... -> NOT(a) OR NOT(b) OR ...
a OR b OR ... -> NOT(a) AND NOT(b) AND ...
NOT(a) -> a
a = b -> a != b
a != b -> a = b
a < b -> a >= b
a >= b -> a < b
a > b -> a <= b
a <= b -> a > b
IS NULL(a) -> IS NOT NULL(a)
IS NOT NULL(a) -> IS NULL(a)
RETURN
New item or
NULL if we cannot apply NOT transformation (see Item::neg_transformer()).
*/
Item *Item_func_not::neg_transformer(THD *thd) /* NOT(x) -> x */
{
2004-08-31 21:10:57 +03:00
return args[0];
}
Item *Item_bool_rowready_func2::neg_transformer(THD *thd)
{
Item *item= negated_item();
return item;
}
/* a IS NULL -> a IS NOT NULL */
Item *Item_func_isnull::neg_transformer(THD *thd)
{
Item *item= new Item_func_isnotnull(args[0]);
return item;
}
/* a IS NOT NULL -> a IS NULL */
Item *Item_func_isnotnull::neg_transformer(THD *thd)
{
Item *item= new Item_func_isnull(args[0]);
return item;
}
Item *Item_cond_and::neg_transformer(THD *thd) /* NOT(a AND b AND ...) -> */
/* NOT a OR NOT b OR ... */
{
neg_arguments(thd);
Item *item= new Item_cond_or(list);
return item;
}
Item *Item_cond_or::neg_transformer(THD *thd) /* NOT(a OR b OR ...) -> */
/* NOT a AND NOT b AND ... */
{
neg_arguments(thd);
Item *item= new Item_cond_and(list);
return item;
}
Item *Item_func_nop_all::neg_transformer(THD *thd)
{
/* "NOT (e $cmp$ ANY (SELECT ...)) -> e $rev_cmp$" ALL (SELECT ...) */
Item_func_not_all *new_item= new Item_func_not_all(args[0]);
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
allany->func= allany->func_creator(FALSE);
allany->all= !allany->all;
allany->upper_item= new_item;
return new_item;
}
Item *Item_func_not_all::neg_transformer(THD *thd)
{
/* "NOT (e $cmp$ ALL (SELECT ...)) -> e $rev_cmp$" ANY (SELECT ...) */
Item_func_nop_all *new_item= new Item_func_nop_all(args[0]);
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
allany->all= !allany->all;
allany->func= allany->func_creator(TRUE);
allany->upper_item= new_item;
return new_item;
}
Item *Item_func_eq::negated_item() /* a = b -> a != b */
{
return new Item_func_ne(args[0], args[1]);
}
Item *Item_func_ne::negated_item() /* a != b -> a = b */
{
return new Item_func_eq(args[0], args[1]);
}
Item *Item_func_lt::negated_item() /* a < b -> a >= b */
{
return new Item_func_ge(args[0], args[1]);
}
Item *Item_func_ge::negated_item() /* a >= b -> a < b */
{
return new Item_func_lt(args[0], args[1]);
}
Item *Item_func_gt::negated_item() /* a > b -> a <= b */
{
return new Item_func_le(args[0], args[1]);
}
Item *Item_func_le::negated_item() /* a <= b -> a > b */
{
return new Item_func_gt(args[0], args[1]);
}
// just fake method, should never be called
Item *Item_bool_rowready_func2::negated_item()
{
DBUG_ASSERT(0);
return 0;
}
Item_equal::Item_equal(Item_field *f1, Item_field *f2)
: Item_bool_func(), const_item(0), eval_item(0), cond_false(0)
{
const_item_cache= 0;
fields.push_back(f1);
fields.push_back(f2);
}
Item_equal::Item_equal(Item *c, Item_field *f)
: Item_bool_func(), eval_item(0), cond_false(0)
{
const_item_cache= 0;
fields.push_back(f);
const_item= c;
}
Item_equal::Item_equal(Item_equal *item_equal)
: Item_bool_func(), eval_item(0), cond_false(0)
{
const_item_cache= 0;
List_iterator_fast<Item_field> li(item_equal->fields);
Item_field *item;
while ((item= li++))
{
fields.push_back(item);
}
const_item= item_equal->const_item;
cond_false= item_equal->cond_false;
}
void Item_equal::add(Item *c)
{
if (cond_false)
return;
if (!const_item)
{
const_item= c;
return;
}
Item_func_eq *func= new Item_func_eq(c, const_item);
func->set_cmp_func();
func->quick_fix_field();
if ((cond_false= !func->val_int()))
const_item_cache= 1;
}
void Item_equal::add(Item_field *f)
{
fields.push_back(f);
}
uint Item_equal::members()
{
return fields.elements;
}
/*
Check whether a field is referred in the multiple equality
SYNOPSIS
contains()
2005-02-09 02:50:45 +04:00
field field whose occurrence is to be checked
DESCRIPTION
2005-02-09 02:50:45 +04:00
The function checks whether field is occurred in the Item_equal object
RETURN VALUES
1 if nultiple equality contains a reference to field
0 otherwise
*/
bool Item_equal::contains(Field *field)
{
List_iterator_fast<Item_field> it(fields);
Item_field *item;
while ((item= it++))
{
if (field->eq(item->field))
return 1;
}
return 0;
}
/*
Join members of another Item_equal object
SYNOPSIS
merge()
item multiple equality whose members are to be joined
DESCRIPTION
2005-02-09 02:50:45 +04:00
The function actually merges two multiple equalities.
After this operation the Item_equal object additionally contains
the field items of another item of the type Item_equal.
If the optional constant items are not equal the cond_false flag is
set to 1.
RETURN VALUES
none
*/
void Item_equal::merge(Item_equal *item)
{
fields.concat(&item->fields);
Item *c= item->const_item;
if (c)
{
/*
The flag cond_false will be set to 1 after this, if
the multiple equality already contains a constant and its
value is not equal to the value of c.
*/
add(c);
}
cond_false|= item->cond_false;
}
/*
Order field items in multiple equality according to a sorting criteria
SYNOPSIS
sort()
cmp function to compare field item
arg context extra parameter for the cmp function
DESCRIPTION
The function perform ordering of the field items in the Item_equal
object according to the criteria determined by the cmp callback parameter.
If cmp(item_field1,item_field2,arg)<0 than item_field1 must be
placed after item_fiel2.
IMPLEMENTATION
The function sorts field items by the exchange sort algorithm.
The list of field items is looked through and whenever two neighboring
members follow in a wrong order they are swapped. This is performed
again and again until we get all members in a right order.
RETURN VALUES
None
*/
void Item_equal::sort(Item_field_cmpfunc cmp, void *arg)
{
bool swap;
List_iterator<Item_field> it(fields);
do
{
Item_field *item1= it++;
Item_field **ref1= it.ref();
Item_field *item2;
swap= FALSE;
while ((item2= it++))
{
Item_field **ref2= it.ref();
if (cmp(item1, item2, arg) < 0)
{
Item_field *item= *ref1;
*ref1= *ref2;
*ref2= item;
swap= TRUE;
}
else
{
item1= item2;
ref1= ref2;
}
}
it.rewind();
} while (swap);
}
/*
Check appearance of new constant items in the multiple equality object
SYNOPSIS
update_const()
DESCRIPTION
The function checks appearance of new constant items among
the members of multiple equalities. Each new constant item is
compared with the designated constant item if there is any in the
multiple equality. If there is none the first new constant item
becomes designated.
RETURN VALUES
none
*/
void Item_equal::update_const()
{
List_iterator<Item_field> it(fields);
Item *item;
while ((item= it++))
{
if (item->const_item())
{
it.remove();
add(item);
}
}
}
bool Item_equal::fix_fields(THD *thd, Item **ref)
{
List_iterator_fast<Item_field> li(fields);
Item *item;
not_null_tables_cache= used_tables_cache= 0;
const_item_cache= 0;
while ((item= li++))
{
table_map tmp_table_map;
used_tables_cache|= item->used_tables();
tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
if (item->maybe_null)
maybe_null=1;
}
fix_length_and_dec();
fixed= 1;
return 0;
}
void Item_equal::update_used_tables()
{
List_iterator_fast<Item_field> li(fields);
Item *item;
not_null_tables_cache= used_tables_cache= 0;
if ((const_item_cache= cond_false))
return;
while ((item=li++))
{
item->update_used_tables();
used_tables_cache|= item->used_tables();
const_item_cache&= item->const_item();
}
}
longlong Item_equal::val_int()
{
Item_field *item_field;
if (cond_false)
return 0;
List_iterator_fast<Item_field> it(fields);
Item *item= const_item ? const_item : it++;
if ((null_value= item->null_value))
return 0;
eval_item->store_value(item);
while ((item_field= it++))
{
/* Skip fields of non-const tables. They haven't been read yet */
if (item_field->field->table->const_table)
{
if ((null_value= item_field->null_value) || eval_item->cmp(item_field))
return 0;
}
}
return 1;
}
void Item_equal::fix_length_and_dec()
{
Item *item= const_item ? const_item : get_first();
2005-02-09 02:50:45 +04:00
eval_item= cmp_item::get_comparator(item->result_type(),
item->collation.collation);
if (item->result_type() == STRING_RESULT)
eval_item->cmp_charset= cmp_collation.collation;
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bool Item_equal::walk(Item_processor processor, bool walk_subquery, byte *arg)
{
List_iterator_fast<Item_field> it(fields);
Item *item;
while ((item= it++))
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
{
if (item->walk(processor, walk_subquery, arg))
return 1;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
}
return Item_func::walk(processor, walk_subquery, arg);
}
Item *Item_equal::transform(Item_transformer transformer, byte *arg)
{
DBUG_ASSERT(!current_thd->is_stmt_prepare());
List_iterator<Item_field> it(fields);
Item *item;
while ((item= it++))
{
Item *new_item= item->transform(transformer, arg);
if (!new_item)
return 0;
/*
THD::change_item_tree() should be called only if the tree was
really transformed, i.e. when a new item has been created.
Otherwise we'll be allocating a lot of unnecessary memory for
change records at each execution.
*/
if (new_item != item)
current_thd->change_item_tree((Item **) it.ref(), new_item);
}
return Item_func::transform(transformer, arg);
}
void Item_equal::print(String *str)
{
str->append(func_name());
str->append('(');
List_iterator_fast<Item_field> it(fields);
Item *item;
if (const_item)
const_item->print(str);
else
{
item= it++;
item->print(str);
}
while ((item= it++))
{
str->append(',');
str->append(' ');
item->print(str);
}
str->append(')');
}