mariadb/mysys/tree.c

758 lines
19 KiB
C
Raw Normal View History

/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
2000-07-31 21:29:14 +02:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
2000-07-31 21:29:14 +02:00
/*
Code for handling red-black (balanced) binary trees.
key in tree is allocated accrding to following:
1) If size < 0 then tree will not allocate keys and only a pointer to
each key is saved in tree.
compare and search functions uses and returns key-pointer
2) If size == 0 then there are two options:
- key_size != 0 to tree_insert: The key will be stored in the tree.
- key_size == 0 to tree_insert: A pointer to the key is stored.
2000-07-31 21:29:14 +02:00
compare and search functions uses and returns key-pointer.
3) if key_size is given to init_tree then each node will continue the
2000-07-31 21:29:14 +02:00
key and calls to insert_key may increase length of key.
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
allign) then key will be put on a 8 alligned adress. Else
the key will be on adress (element+1). This is transparent for user
compare and search functions uses a pointer to given key-argument.
- If you use a free function for tree-elements and you are freeing
the element itself, you should use key_size = 0 to init_tree and
tree_search
2000-07-31 21:29:14 +02:00
The actual key in TREE_ELEMENT is saved as a pointer or after the
TREE_ELEMENT struct.
If one uses only pointers in tree one can use tree_set_pointer() to
change address of data.
Implemented by monty.
2000-07-31 21:29:14 +02:00
*/
2003-06-16 13:18:57 +02:00
/*
NOTE:
tree->compare function should be ALWAYS called as
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
and not other way around, as
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
ft_boolean_search.c (at least) relies on that.
*/
2000-07-31 21:29:14 +02:00
#include "mysys_priv.h"
#include <m_string.h>
#include <my_tree.h>
#include "my_base.h"
2000-07-31 21:29:14 +02:00
#define BLACK 1
#define RED 0
#define DEFAULT_ALLOC_SIZE 8192
#define DEFAULT_ALIGN_SIZE 8192
2000-07-31 21:29:14 +02:00
static void delete_tree_element(TREE *,TREE_ELEMENT *);
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
TREE_ELEMENT *leaf);
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
/* The actuall code for handling binary trees */
#ifndef DBUG_OFF
2001-07-10 20:23:37 +02:00
static int test_rb_tree(TREE_ELEMENT *element);
#endif
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
int size, qsort_cmp2 compare, my_bool with_delete,
tree_element_free free_element, void *custom_arg)
2000-07-31 21:29:14 +02:00
{
DBUG_ENTER("init_tree");
DBUG_PRINT("enter",("tree: 0x%lx size: %d", (long) tree, size));
2000-07-31 21:29:14 +02:00
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
default_alloc_size= DEFAULT_ALLOC_SIZE;
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
2000-07-31 21:29:14 +02:00
tree->root= &tree->null_element;
tree->compare=compare;
tree->size_of_element=size > 0 ? (uint) size : 0;
tree->memory_limit=memory_limit;
2000-07-31 21:29:14 +02:00
tree->free=free_element;
tree->allocated=0;
2000-07-31 21:29:14 +02:00
tree->elements_in_tree=0;
tree->custom_arg = custom_arg;
2000-07-31 21:29:14 +02:00
tree->null_element.colour=BLACK;
tree->null_element.left=tree->null_element.right=0;
tree->flag= 0;
2000-07-31 21:29:14 +02:00
if (!free_element && size >= 0 &&
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
{
/*
We know that the data doesn't have to be aligned (like if the key
contains a double), so we can store the data combined with the
TREE_ELEMENT.
*/
2000-07-31 21:29:14 +02:00
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
/* Fix allocation size so that we don't lose any memory */
2000-07-31 21:29:14 +02:00
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
if (!default_alloc_size)
default_alloc_size=1;
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
}
else
{
tree->offset_to_key=0; /* use key through pointer */
tree->size_of_element+=sizeof(void*);
}
if (!(tree->with_delete=with_delete))
{
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
2000-07-31 21:29:14 +02:00
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
}
DBUG_VOID_RETURN;
}
static void free_tree(TREE *tree, myf free_flags)
2000-07-31 21:29:14 +02:00
{
DBUG_ENTER("free_tree");
DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
2000-07-31 21:29:14 +02:00
if (tree->root) /* If initialized */
{
if (tree->with_delete)
delete_tree_element(tree,tree->root);
else
{
if (tree->free)
{
if (tree->memory_limit)
(*tree->free)(NULL, free_init, tree->custom_arg);
2000-07-31 21:29:14 +02:00
delete_tree_element(tree,tree->root);
if (tree->memory_limit)
(*tree->free)(NULL, free_end, tree->custom_arg);
}
free_root(&tree->mem_root, free_flags);
2000-07-31 21:29:14 +02:00
}
}
tree->root= &tree->null_element;
tree->elements_in_tree=0;
tree->allocated=0;
2000-07-31 21:29:14 +02:00
DBUG_VOID_RETURN;
}
void delete_tree(TREE* tree)
{
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
}
void reset_tree(TREE* tree)
{
2004-03-04 08:50:37 +02:00
/* do not free mem_root, just mark blocks as free */
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
}
2000-07-31 21:29:14 +02:00
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
{
if (element != &tree->null_element)
{
delete_tree_element(tree,element->left);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
delete_tree_element(tree,element->right);
2000-07-31 21:29:14 +02:00
if (tree->with_delete)
my_free((char*) element,MYF(0));
2000-07-31 21:29:14 +02:00
}
}
2004-03-04 08:50:37 +02:00
/*
insert, search and delete of elements
The following should be true:
parent[0] = & parent[-1][0]->left ||
parent[0] = & parent[-1][0]->right
*/
2000-07-31 21:29:14 +02:00
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
void* custom_arg)
2000-07-31 21:29:14 +02:00
{
int cmp;
TREE_ELEMENT *element,***parent;
parent= tree->parents;
*parent = &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element ||
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
2000-07-31 21:29:14 +02:00
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element == &tree->null_element)
{
uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
tree->allocated+=alloc_size;
if (tree->memory_limit && tree->elements_in_tree
&& tree->allocated > tree->memory_limit)
{
reset_tree(tree);
return tree_insert(tree, key, key_size, custom_arg);
}
2000-07-31 21:29:14 +02:00
key_size+=tree->size_of_element;
if (tree->with_delete)
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
2000-07-31 21:29:14 +02:00
else
2004-03-04 08:50:37 +02:00
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
2000-07-31 21:29:14 +02:00
if (!element)
return(NULL);
**parent=element;
element->left=element->right= &tree->null_element;
if (!tree->offset_to_key)
{
if (key_size == sizeof(void*)) /* no length, save pointer */
*((void**) (element+1))=key;
else
{
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
memcpy((uchar*) *((void **) (element+1)),key,
2000-07-31 21:29:14 +02:00
(size_t) (key_size-sizeof(void*)));
}
}
else
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
2004-03-04 08:50:37 +02:00
element->count=1; /* May give warning in purify */
2000-07-31 21:29:14 +02:00
tree->elements_in_tree++;
2004-03-04 08:50:37 +02:00
rb_insert(tree,parent,element); /* rebalance tree */
2000-07-31 21:29:14 +02:00
}
else
{
if (tree->flag & TREE_NO_DUPS)
return(NULL);
2000-07-31 21:29:14 +02:00
element->count++;
/* Avoid a wrap over of the count. */
if (! element->count)
element->count--;
}
DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
2000-07-31 21:29:14 +02:00
return element;
}
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
2000-07-31 21:29:14 +02:00
{
int cmp,remove_colour;
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
if (!tree->with_delete)
return 1; /* not allowed */
parent= tree->parents;
*parent= &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element)
return 1; /* Was not in tree */
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
2000-07-31 21:29:14 +02:00
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element->left == &tree->null_element)
{
(**parent)=element->right;
remove_colour= element->colour;
}
else if (element->right == &tree->null_element)
{
(**parent)=element->left;
remove_colour= element->colour;
}
else
{
org_parent= parent;
*++parent= &element->right; nod= element->right;
while (nod->left != &tree->null_element)
{
*++parent= &nod->left; nod= nod->left;
}
(**parent)=nod->right; /* unlink nod from tree */
remove_colour= nod->colour;
org_parent[0][0]=nod; /* put y in place of element */
org_parent[1]= &nod->right;
nod->left=element->left;
nod->right=element->right;
nod->colour=element->colour;
}
if (remove_colour == BLACK)
rb_delete_fixup(tree,parent);
if (tree->free)
2001-07-04 17:31:43 +02:00
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
my_free((uchar*) element,MYF(0));
2000-07-31 21:29:14 +02:00
tree->elements_in_tree--;
return 0;
}
void *tree_search(TREE *tree, void *key, void *custom_arg)
2000-07-31 21:29:14 +02:00
{
int cmp;
TREE_ELEMENT *element=tree->root;
for (;;)
{
if (element == &tree->null_element)
return (void*) 0;
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
2000-07-31 21:29:14 +02:00
return ELEMENT_KEY(tree,element);
if (cmp < 0)
element=element->right;
else
element=element->left;
}
}
void *tree_search_key(TREE *tree, const void *key,
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
enum ha_rkey_function flag, void *custom_arg)
{
int cmp;
TREE_ELEMENT *element= tree->root;
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
TREE_ELEMENT **last_equal_element= NULL;
/*
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
*/
*parents = &tree->null_element;
while (element != &tree->null_element)
{
*++parents= element;
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
key)) == 0)
{
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_KEY_OR_NEXT:
case HA_READ_BEFORE_KEY:
last_equal_element= parents;
cmp= 1;
break;
case HA_READ_AFTER_KEY:
cmp= -1;
break;
case HA_READ_PREFIX_LAST:
case HA_READ_PREFIX_LAST_OR_PREV:
last_equal_element= parents;
cmp= -1;
break;
default:
return NULL;
}
}
if (cmp < 0) /* element < key */
{
last_right_step_parent= parents;
element= element->right;
}
else
{
last_left_step_parent= parents;
element= element->left;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_PREFIX_LAST:
*last_pos= last_equal_element;
break;
case HA_READ_KEY_OR_NEXT:
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
break;
case HA_READ_AFTER_KEY:
*last_pos= last_left_step_parent;
break;
case HA_READ_PREFIX_LAST_OR_PREV:
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
break;
case HA_READ_BEFORE_KEY:
*last_pos= last_right_step_parent;
break;
default:
return NULL;
}
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
}
/*
Search first (the most left) or last (the most right) tree element
*/
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
TREE_ELEMENT ***last_pos, int child_offs)
{
TREE_ELEMENT *element= tree->root;
*parents= &tree->null_element;
while (element != &tree->null_element)
{
*++parents= element;
element= ELEMENT_CHILD(element, child_offs);
}
*last_pos= parents;
return **last_pos != &tree->null_element ?
ELEMENT_KEY(tree, **last_pos) : NULL;
}
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
int r_offs)
{
TREE_ELEMENT *x= **last_pos;
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
{
x= ELEMENT_CHILD(x, r_offs);
*++*last_pos= x;
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
{
x= ELEMENT_CHILD(x, l_offs);
*++*last_pos= x;
}
return ELEMENT_KEY(tree, x);
}
else
{
TREE_ELEMENT *y= *--*last_pos;
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
{
x= y;
y= *--*last_pos;
}
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
}
}
/*
Expected that tree is fully balanced
(each path from root to leaf has the same length)
*/
ha_rows tree_record_pos(TREE *tree, const void *key,
enum ha_rkey_function flag, void *custom_arg)
{
int cmp;
TREE_ELEMENT *element= tree->root;
double left= 1;
double right= tree->elements_in_tree;
while (element != &tree->null_element)
{
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
key)) == 0)
{
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
cmp= 1;
break;
case HA_READ_AFTER_KEY:
cmp= -1;
break;
default:
return HA_POS_ERROR;
}
}
if (cmp < 0) /* element < key */
{
element= element->right;
left= (left + right) / 2;
}
else
{
element= element->left;
right= (left + right) / 2;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
return (ha_rows) right;
case HA_READ_AFTER_KEY:
return (ha_rows) left;
default:
return HA_POS_ERROR;
}
}
2000-07-31 21:29:14 +02:00
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
{
switch (visit) {
case left_root_right:
return tree_walk_left_root_right(tree,tree->root,action,argument);
case right_root_left:
return tree_walk_right_root_left(tree,tree->root,action,argument);
}
return 0; /* Keep gcc happy */
}
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->left) /* Not null_element */
{
if ((error=tree_walk_left_root_right(tree,element->left,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_left_root_right(tree,element->right,action,argument);
return error;
}
return 0;
}
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->right) /* Not null_element */
{
if ((error=tree_walk_right_root_left(tree,element->right,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_right_root_left(tree,element->left,action,argument);
return error;
}
return 0;
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y;
y=leaf->right;
leaf->right=y->left;
parent[0]=y;
y->left=leaf;
}
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *x;
x=leaf->left;
leaf->left=x->right;
parent[0]=x;
x->right=leaf;
}
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y,*par,*par2;
leaf->colour=RED;
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
{
if (par == (par2=parent[-2][0])->left)
{
y= par2->right;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(parent[-1],par);
par=leaf; /* leaf is now parent to old leaf */
}
par->colour=BLACK;
par2->colour=RED;
right_rotate(parent[-2],par2);
break;
}
}
else
{
y= par2->left;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(parent[-1],par);
par=leaf;
}
par->colour=BLACK;
par2->colour=RED;
left_rotate(parent[-2],par2);
break;
}
}
}
tree->root->colour=BLACK;
}
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
{
TREE_ELEMENT *x,*w,*par;
x= **parent;
while (x != tree->root && x->colour == BLACK)
{
if (x == (par=parent[-1][0])->left)
{
w=par->right;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
left_rotate(parent[-1],par);
parent[0]= &w->left;
*++parent= &par->left;
w=par->right;
}
if (w->left->colour == BLACK && w->right->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->right->colour == BLACK)
{
w->left->colour=BLACK;
w->colour=RED;
right_rotate(&par->right,w);
w=par->right;
}
w->colour=par->colour;
par->colour=BLACK;
w->right->colour=BLACK;
left_rotate(parent[-1],par);
x=tree->root;
break;
}
}
else
{
w=par->left;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
right_rotate(parent[-1],par);
parent[0]= &w->right;
*++parent= &par->right;
w=par->left;
}
if (w->right->colour == BLACK && w->left->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->left->colour == BLACK)
{
w->right->colour=BLACK;
w->colour=RED;
left_rotate(&par->left,w);
w=par->left;
}
w->colour=par->colour;
par->colour=BLACK;
w->left->colour=BLACK;
right_rotate(parent[-1],par);
x=tree->root;
break;
}
}
}
x->colour=BLACK;
}
2001-07-10 20:23:37 +02:00
#ifndef DBUG_OFF
/* Test that the proporties for a red-black tree holds */
static int test_rb_tree(TREE_ELEMENT *element)
{
int count_l,count_r;
if (!element->left)
return 0; /* Found end of tree */
if (element->colour == RED &&
(element->left->colour == RED || element->right->colour == RED))
{
printf("Wrong tree: Found two red in a row\n");
return -1;
}
count_l=test_rb_tree(element->left);
count_r=test_rb_tree(element->right);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
return count_l+(element->colour == BLACK);
printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
}
return -1;
}
#endif