mariadb/storage/innobase/include/rem0rec.h

1335 lines
44 KiB
C
Raw Normal View History

/*****************************************************************************
2016-06-21 14:21:03 +02:00
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
2020-07-02 06:17:51 +03:00
Copyright (c) 2017, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
2019-05-11 19:25:02 +03:00
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
@file include/rem0rec.h
Record manager
Created 5/30/1994 Heikki Tuuri
*************************************************************************/
#ifndef rem0rec_h
#define rem0rec_h
#ifndef UNIV_INNOCHECKSUM
#include "data0data.h"
#include "rem0types.h"
#include "mtr0types.h"
#include "page0types.h"
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
#include "dict0dict.h"
#include "trx0types.h"
#endif /*! UNIV_INNOCHECKSUM */
#include <ostream>
#include <sstream>
/* Info bit denoting the predefined minimum record: this bit is set
if and only if the record is the first user record on a non-leaf
B-tree page that is the leftmost page on its level
(PAGE_LEVEL is nonzero and FIL_PAGE_PREV is FIL_NULL). */
#define REC_INFO_MIN_REC_FLAG 0x10UL
/* The deleted flag in info bits */
#define REC_INFO_DELETED_FLAG 0x20UL /* when bit is set to 1, it means the
record has been delete marked */
/* Number of extra bytes in an old-style record,
in addition to the data and the offsets */
#define REC_N_OLD_EXTRA_BYTES 6
/* Number of extra bytes in a new-style record,
in addition to the data and the offsets */
#define REC_N_NEW_EXTRA_BYTES 5
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Record status values for ROW_FORMAT=COMPACT,DYNAMIC,COMPRESSED */
enum rec_comp_status_t {
/** User record (PAGE_LEVEL=0, heap>=PAGE_HEAP_NO_USER_LOW) */
REC_STATUS_ORDINARY = 0,
/** Node pointer record (PAGE_LEVEL>=0, heap>=PAGE_HEAP_NO_USER_LOW) */
REC_STATUS_NODE_PTR = 1,
/** The page infimum pseudo-record (heap=PAGE_HEAP_NO_INFIMUM) */
REC_STATUS_INFIMUM = 2,
/** The page supremum pseudo-record (heap=PAGE_HEAP_NO_SUPREMUM) */
REC_STATUS_SUPREMUM = 3,
/** Clustered index record that has been inserted or updated
after instant ADD COLUMN (more than dict_index_t::n_core_fields) */
REC_STATUS_COLUMNS_ADDED = 4
};
/** The dtuple_t::info_bits of the metadata pseudo-record.
@see rec_is_metadata() */
static const byte REC_INFO_METADATA
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
= REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED;
#define REC_NEW_STATUS 3 /* This is single byte bit-field */
#define REC_NEW_STATUS_MASK 0x7UL
#define REC_NEW_STATUS_SHIFT 0
/* The following four constants are needed in page0zip.cc in order to
efficiently compress and decompress pages. */
/* The offset of heap_no in a compact record */
#define REC_NEW_HEAP_NO 4
/* The shift of heap_no in a compact record.
The status is stored in the low-order bits. */
#define REC_HEAP_NO_SHIFT 3
/* Length of a B-tree node pointer, in bytes */
#define REC_NODE_PTR_SIZE 4
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
#ifndef UNIV_INNOCHECKSUM
/** SQL null flag in a 1-byte offset of ROW_FORMAT=REDUNDANT records */
static const rec_offs REC_1BYTE_SQL_NULL_MASK= 0x80;
/** SQL null flag in a 2-byte offset of ROW_FORMAT=REDUNDANT records */
static const rec_offs REC_2BYTE_SQL_NULL_MASK= 0x8000;
/** In a 2-byte offset of ROW_FORMAT=REDUNDANT records, the second most
significant bit denotes that the tail of a field is stored off-page. */
static const rec_offs REC_2BYTE_EXTERN_MASK= 0x4000;
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
static const size_t RECORD_OFFSET= 2;
static const size_t INDEX_OFFSET=
RECORD_OFFSET + sizeof(rec_t *) / sizeof(rec_offs);
2019-12-13 10:08:57 +02:00
#endif /* UNIV_INNOCHECKSUM */
/* Length of the rec_get_offsets() header */
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
static const size_t REC_OFFS_HEADER_SIZE=
#ifdef UNIV_DEBUG
2019-12-13 10:08:57 +02:00
#ifndef UNIV_INNOCHECKSUM
sizeof(rec_t *) / sizeof(rec_offs) +
sizeof(dict_index_t *) / sizeof(rec_offs) +
2019-12-13 10:08:57 +02:00
#endif /* UNIV_INNOCHECKSUM */
#endif /* UNIV_DEBUG */
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
2;
/* Number of elements that should be initially allocated for the
offsets[] array, first passed to rec_get_offsets() */
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
static const size_t REC_OFFS_NORMAL_SIZE= 300;
static const size_t REC_OFFS_SMALL_SIZE= 18;
static const size_t REC_OFFS_SEC_INDEX_SIZE=
/* PK max key parts */ 16 + /* sec idx max key parts */ 16 +
/* child page number for non-leaf pages */ 1;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Get the base address of offsets. The extra_size is stored at
this position, and following positions hold the end offsets of
the fields. */
#define rec_offs_base(offsets) (offsets + REC_OFFS_HEADER_SIZE)
2019-12-13 10:08:57 +02:00
#ifndef UNIV_INNOCHECKSUM
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
/* Offset consists of two parts: 2 upper bits is type and all other bits is
value */
2019-12-13 10:08:57 +02:00
/** Only 4 different values is possible! */
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
enum field_type_t
{
/** normal field */
STORED_IN_RECORD= 0 << 14,
/** this field is stored off-page */
STORED_OFFPAGE= 1 << 14,
/** just an SQL NULL */
2019-12-13 10:08:57 +02:00
SQL_NULL= 2 << 14,
/** instantly added field */
DEFAULT= 3 << 14,
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
};
/** without 2 upper bits */
static const rec_offs DATA_MASK= 0x3fff;
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
/** 2 upper bits */
static const rec_offs TYPE_MASK= ~DATA_MASK;
inline field_type_t get_type(rec_offs n)
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
{
return static_cast<field_type_t>(n & TYPE_MASK);
}
inline void set_type(rec_offs &n, field_type_t type)
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
{
n= (n & DATA_MASK) | static_cast<rec_offs>(type);
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
}
inline rec_offs get_value(rec_offs n) { return n & DATA_MASK; }
inline rec_offs combine(rec_offs value, field_type_t type)
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
{
return get_value(value) | static_cast<rec_offs>(type);
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
}
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Compact flag ORed to the extra size returned by rec_get_offsets() */
2020-05-04 16:47:11 +02:00
const rec_offs REC_OFFS_COMPACT= ~(rec_offs(~0) >> 1);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** External flag in offsets returned by rec_get_offsets() */
2020-05-04 16:47:11 +02:00
const rec_offs REC_OFFS_EXTERNAL= REC_OFFS_COMPACT >> 1;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Default value flag in offsets returned by rec_get_offsets() */
2020-05-04 16:47:11 +02:00
const rec_offs REC_OFFS_DEFAULT= REC_OFFS_COMPACT >> 2;
const rec_offs REC_OFFS_MASK= REC_OFFS_DEFAULT - 1;
/******************************************************//**
The following function is used to get the pointer of the next chained record
on the same page.
@return pointer to the next chained record, or NULL if none */
UNIV_INLINE
const rec_t*
rec_get_next_ptr_const(
/*===================*/
const rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to get the pointer of the next chained record
on the same page.
@return pointer to the next chained record, or NULL if none */
UNIV_INLINE
rec_t*
rec_get_next_ptr(
/*=============*/
rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to get the offset of the
next chained record on the same page.
@return the page offset of the next chained record, or 0 if none */
UNIV_INLINE
ulint
rec_get_next_offs(
/*==============*/
const rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the next record offset field
of an old-style record. */
UNIV_INLINE
void
rec_set_next_offs_old(
/*==================*/
rec_t* rec, /*!< in: old-style physical record */
ulint next) /*!< in: offset of the next record */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to set the next record offset field
of a new-style record. */
UNIV_INLINE
void
rec_set_next_offs_new(
/*==================*/
rec_t* rec, /*!< in/out: new-style physical record */
ulint next) /*!< in: offset of the next record */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to get the number of fields
in an old-style record.
@return number of data fields */
UNIV_INLINE
ulint
rec_get_n_fields_old(
/*=================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to get the number of fields
in a record.
@return number of data fields */
UNIV_INLINE
ulint
rec_get_n_fields(
/*=============*/
const rec_t* rec, /*!< in: physical record */
const dict_index_t* index) /*!< in: record descriptor */
MY_ATTRIBUTE((warn_unused_result));
/** Confirms the n_fields of the entry is sane with comparing the other
record in the same page specified
@param[in] index index
@param[in] rec record of the same page
@param[in] entry index entry
@return true if n_fields is sane */
UNIV_INLINE
bool
rec_n_fields_is_sane(
dict_index_t* index,
const rec_t* rec,
const dtuple_t* entry)
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to get the number of records owned by the
previous directory record.
@return number of owned records */
UNIV_INLINE
ulint
rec_get_n_owned_old(
/*================*/
const rec_t* rec) /*!< in: old-style physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the number of owned records. */
UNIV_INLINE
void
rec_set_n_owned_old(
/*================*/
rec_t* rec, /*!< in: old-style physical record */
ulint n_owned) /*!< in: the number of owned */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to get the number of records owned by the
previous directory record.
@return number of owned records */
UNIV_INLINE
ulint
rec_get_n_owned_new(
/*================*/
const rec_t* rec) /*!< in: new-style physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the number of owned records. */
UNIV_INLINE
void
rec_set_n_owned_new(
/*================*/
rec_t* rec, /*!< in/out: new-style physical record */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
ulint n_owned)/*!< in: the number of owned */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull(1)));
/******************************************************//**
The following function is used to retrieve the info bits of
a record.
@return info bits */
UNIV_INLINE
ulint
rec_get_info_bits(
/*==============*/
const rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the info bits of a record. */
UNIV_INLINE
void
rec_set_info_bits_old(
/*==================*/
rec_t* rec, /*!< in: old-style physical record */
ulint bits) /*!< in: info bits */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to set the info bits of a record. */
UNIV_INLINE
void
rec_set_info_bits_new(
/*==================*/
rec_t* rec, /*!< in/out: new-style physical record */
ulint bits) /*!< in: info bits */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Determine the status bits of a non-REDUNDANT record.
@param[in] rec ROW_FORMAT=COMPACT,DYNAMIC,COMPRESSED record
@return status bits */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
inline
rec_comp_status_t
rec_get_status(const rec_t* rec)
{
byte bits = rec[-REC_NEW_STATUS] & REC_NEW_STATUS_MASK;
ut_ad(bits <= REC_STATUS_COLUMNS_ADDED);
return static_cast<rec_comp_status_t>(bits);
}
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Set the status bits of a non-REDUNDANT record.
@param[in,out] rec ROW_FORMAT=COMPACT,DYNAMIC,COMPRESSED record
@param[in] bits status bits */
inline
void
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
rec_set_status(rec_t* rec, byte bits)
{
ut_ad(bits <= REC_STATUS_COLUMNS_ADDED);
rec[-REC_NEW_STATUS] = (rec[-REC_NEW_STATUS] & ~REC_NEW_STATUS_MASK)
| bits;
}
MDEV-16131 Assertion failed in dict_index_t::instant_field_value() During a table-rebuilding online ALTER TABLE, if dict_index_t::remove_instant() was invoked on the source table (because it became empty), we would inadvertently change the way how log records are written and parsed. We must keep the online_log format unchanged throughout the whole table-rebuilding operation. dict_col_t::def_t: Name the type of dict_col_t::def_val. rec_get_n_add_field_len(), rec_set_n_add_field(): Define globally, because these will be needed in row_log_table_low(). rec_init_offsets_temp(), rec_init_offsets_comp_ordinary(): Add the parameter def_val for explicitly passing the default values of the instantly added columns of the source table, so that dict_index_t::instant_field_value() will not be called during row_log_table_apply(). This allows us to consistently parse the online_log records, even if the source table was converted to the canonical non-instant format during the rebuild operation. row_log_t::non_core_fields[]: The default values of the instantly added columns on the source table; copied during ha_innobase::prepare_inplace_alter_table() while the table is exclusively locked. row_log_t::instant_field_value(): Accessor to non_core_fields[], analogous to dict_index_t::instant_field_value(). row_log_table_low(): Add fake_extra_size bytes to the record header if the source table was converted to the canonical format during the operation. row_log_allocate(): Initialize row_log_t::non_core_fields.
2018-07-26 22:52:53 +03:00
/** Get the length of added field count in a REC_STATUS_COLUMNS_ADDED record.
@param[in] n_add_field number of added fields, minus one
@return storage size of the field count, in bytes */
inline unsigned rec_get_n_add_field_len(ulint n_add_field)
{
ut_ad(n_add_field < REC_MAX_N_FIELDS);
return n_add_field < 0x80 ? 1 : 2;
}
/** Set the added field count in a REC_STATUS_COLUMNS_ADDED record.
@param[in,out] header variable header of a REC_STATUS_COLUMNS_ADDED record
@param[in] n_add number of added fields, minus 1
@return record header before the number of added fields */
inline void rec_set_n_add_field(byte*& header, ulint n_add)
{
ut_ad(n_add < REC_MAX_N_FIELDS);
if (n_add < 0x80) {
*header-- = byte(n_add);
} else {
*header-- = byte(n_add) | 0x80;
*header-- = byte(n_add >> 7);
}
}
/******************************************************//**
The following function is used to retrieve the info and status
bits of a record. (Only compact records have status bits.)
@return info bits */
UNIV_INLINE
ulint
rec_get_info_and_status_bits(
/*=========================*/
const rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the info and status
bits of a record. (Only compact records have status bits.) */
UNIV_INLINE
void
rec_set_info_and_status_bits(
/*=========================*/
rec_t* rec, /*!< in/out: compact physical record */
ulint bits) /*!< in: info bits */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function tells if record is delete marked.
@return nonzero if delete marked */
UNIV_INLINE
ulint
rec_get_deleted_flag(
/*=================*/
const rec_t* rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the deleted bit. */
UNIV_INLINE
void
rec_set_deleted_flag_old(
/*=====================*/
rec_t* rec, /*!< in: old-style physical record */
ulint flag) /*!< in: nonzero if delete marked */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to set the deleted bit. */
UNIV_INLINE
void
rec_set_deleted_flag_new(
/*=====================*/
rec_t* rec, /*!< in/out: new-style physical record */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
ulint flag) /*!< in: nonzero if delete marked */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull(1)));
/******************************************************//**
The following function tells if a new-style record is a node pointer.
@return TRUE if node pointer */
UNIV_INLINE
bool
rec_get_node_ptr_flag(
/*==================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to get the order number
of an old-style record in the heap of the index page.
@return heap order number */
UNIV_INLINE
ulint
rec_get_heap_no_old(
/*================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the heap number
field in an old-style record. */
UNIV_INLINE
void
rec_set_heap_no_old(
/*================*/
rec_t* rec, /*!< in: physical record */
ulint heap_no)/*!< in: the heap number */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to get the order number
of a new-style record in the heap of the index page.
@return heap order number */
UNIV_INLINE
ulint
rec_get_heap_no_new(
/*================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the heap number
field in a new-style record. */
UNIV_INLINE
void
rec_set_heap_no_new(
/*================*/
rec_t* rec, /*!< in/out: physical record */
ulint heap_no)/*!< in: the heap number */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
The following function is used to test whether the data offsets
in the record are stored in one-byte or two-byte format.
@return TRUE if 1-byte form */
UNIV_INLINE
ibool
rec_get_1byte_offs_flag(
/*====================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
The following function is used to set the 1-byte offsets flag. */
UNIV_INLINE
void
rec_set_1byte_offs_flag(
/*====================*/
rec_t* rec, /*!< in: physical record */
ibool flag) /*!< in: TRUE if 1byte form */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/******************************************************//**
Returns the offset of nth field end if the record is stored in the 1-byte
offsets form. If the field is SQL null, the flag is ORed in the returned
value.
@return offset of the start of the field, SQL null flag ORed */
UNIV_INLINE
MDEV-20950 Reduce size of record offsets offset_t: this is a type which represents one record offset. It's unsigned short int. a lot of functions: replace ulint with offset_t btr_pcur_restore_position_func(), page_validate(), row_ins_scan_sec_index_for_duplicate(), row_upd_clust_rec_by_insert_inherit_func(), row_vers_impl_x_locked_low(), trx_undo_prev_version_build(): allocate record offsets on the stack instead of waiting for rec_get_offsets() to allocate it from mem_heap_t. So, reducing memory allocations. RECORD_OFFSET, INDEX_OFFSET: now it's less convenient to store pointers in offset_t* array. One pointer occupies now several offset_t. And those constant are start indexes into array to places where to store pointer values REC_OFFS_HEADER_SIZE: adjusted for the new reality REC_OFFS_NORMAL_SIZE: increase size from 100 to 300 which means less heap allocations. And sizeof(offset_t[REC_OFFS_NORMAL_SIZE]) now is 600 bytes which is smaller than previous 800 bytes. REC_OFFS_SEC_INDEX_SIZE: adjusted for the new reality rem0rec.h, rem0rec.ic, rem0rec.cc: various arguments, return values and local variables types were changed to fix numerous integer conversions issues. enum field_type_t: offset types concept was introduces which replaces old offset flags stuff. Like in earlier version, 2 upper bits are used to store offset type. And this enum represents those types. REC_OFFS_SQL_NULL, REC_OFFS_MASK: removed get_type(), set_type(), get_value(), combine(): these are convenience functions to work with offsets and it's types rec_offs_base()[0]: still uses an old scheme with flags REC_OFFS_COMPACT and REC_OFFS_EXTERNAL rec_offs_base()[i]: these have type offset_t now. Two upper bits contains type.
2019-11-04 22:30:12 +03:00
uint8_t
rec_1_get_field_end_info(
/*=====================*/
const rec_t* rec, /*!< in: record */
ulint n) /*!< in: field index */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
Returns the offset of nth field end if the record is stored in the 2-byte
offsets form. If the field is SQL null, the flag is ORed in the returned
value.
@return offset of the start of the field, SQL null flag and extern
storage flag ORed */
UNIV_INLINE
2019-12-13 10:08:57 +02:00
uint16_t
rec_2_get_field_end_info(
/*=====================*/
const rec_t* rec, /*!< in: record */
ulint n) /*!< in: field index */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
Returns nonzero if the field is stored off-page.
@retval 0 if the field is stored in-page
@retval REC_2BYTE_EXTERN_MASK if the field is stored externally */
UNIV_INLINE
ulint
rec_2_is_field_extern(
/*==================*/
const rec_t* rec, /*!< in: record */
ulint n) /*!< in: field index */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
Determine how many of the first n columns in a compact
physical record are stored externally.
@return number of externally stored columns */
ulint
rec_get_n_extern_new(
/*=================*/
const rec_t* rec, /*!< in: compact physical record */
const dict_index_t* index, /*!< in: record descriptor */
ulint n) /*!< in: number of columns to scan */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull, warn_unused_result));
/** Determine the offsets to each field in an index record.
@param[in] rec physical record
@param[in] index the index that the record belongs to
@param[in,out] offsets array comprising offsets[0] allocated elements,
or an array from rec_get_offsets(), or NULL
@param[in] leaf whether this is a leaf-page record
@param[in] n_fields maximum number of offsets to compute
(ULINT_UNDEFINED to compute all offsets)
@param[in,out] heap memory heap
@return the new offsets */
rec_offs*
rec_get_offsets_func(
const rec_t* rec,
const dict_index_t* index,
rec_offs* offsets,
bool leaf,
ulint n_fields,
2014-05-05 18:20:28 +02:00
#ifdef UNIV_DEBUG
const char* file, /*!< in: file name where called */
unsigned line, /*!< in: line number where called */
2014-05-05 18:20:28 +02:00
#endif /* UNIV_DEBUG */
mem_heap_t** heap) /*!< in/out: memory heap */
#ifdef UNIV_DEBUG
MY_ATTRIBUTE((nonnull(1,2,6,8),warn_unused_result));
2014-05-05 18:20:28 +02:00
#else /* UNIV_DEBUG */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
MY_ATTRIBUTE((nonnull(1,2,6),warn_unused_result));
2014-05-05 18:20:28 +02:00
#endif /* UNIV_DEBUG */
2014-05-05 18:20:28 +02:00
#ifdef UNIV_DEBUG
# define rec_get_offsets(rec, index, offsets, leaf, n, heap) \
rec_get_offsets_func(rec,index,offsets,leaf,n,__FILE__,__LINE__,heap)
2014-05-05 18:20:28 +02:00
#else /* UNIV_DEBUG */
# define rec_get_offsets(rec, index, offsets, leaf, n, heap) \
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
rec_get_offsets_func(rec, index, offsets, leaf, n, heap)
2014-05-05 18:20:28 +02:00
#endif /* UNIV_DEBUG */
/******************************************************//**
The following function determines the offsets to each field
in the record. It can reuse a previously allocated array. */
void
rec_get_offsets_reverse(
/*====================*/
const byte* extra, /*!< in: the extra bytes of a
compact record in reverse order,
excluding the fixed-size
REC_N_NEW_EXTRA_BYTES */
const dict_index_t* index, /*!< in: record descriptor */
ulint node_ptr,/*!< in: nonzero=node pointer,
0=leaf node */
rec_offs* offsets)/*!< in/out: array consisting of
offsets[0] allocated elements */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
#ifdef UNIV_DEBUG
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Validate offsets returned by rec_get_offsets().
@param[in] rec record, or NULL
@param[in] index the index that the record belongs in, or NULL
@param[in,out] offsets the offsets of the record
@return true */
bool
rec_offs_validate(
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
const rec_t* rec,
const dict_index_t* index,
2020-05-04 16:47:11 +02:00
const rec_offs* offsets)
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull(3), warn_unused_result));
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Update debug data in offsets, in order to tame rec_offs_validate().
@param[in] rec record
@param[in] index the index that the record belongs in
@param[in] leaf whether the record resides in a leaf page
@param[in,out] offsets offsets from rec_get_offsets() to adjust */
void
rec_offs_make_valid(
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
const rec_t* rec,
const dict_index_t* index,
bool leaf,
2020-05-04 16:47:11 +02:00
rec_offs* offsets)
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
#else
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
# define rec_offs_make_valid(rec, index, leaf, offsets)
#endif /* UNIV_DEBUG */
/************************************************************//**
The following function is used to get the offset to the nth
data field in an old-style record.
@return offset to the field */
ulint
rec_get_nth_field_offs_old(
/*=======================*/
const rec_t* rec, /*!< in: record */
ulint n, /*!< in: index of the field */
ulint* len) /*!< out: length of the field; UNIV_SQL_NULL
if SQL null */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
#define rec_get_nth_field_old(rec, n, len) \
((rec) + rec_get_nth_field_offs_old(rec, n, len))
/************************************************************//**
Gets the physical size of an old-style field.
Also an SQL null may have a field of size > 0,
if the data type is of a fixed size.
@return field size in bytes */
UNIV_INLINE
ulint
rec_get_nth_field_size(
/*===================*/
const rec_t* rec, /*!< in: record */
ulint n) /*!< in: index of the field */
MY_ATTRIBUTE((warn_unused_result));
/************************************************************//**
The following function is used to get an offset to the nth
data field in a record.
@return offset from the origin of rec */
UNIV_INLINE
rec_offs
rec_get_nth_field_offs(
/*===================*/
const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */
ulint n, /*!< in: index of the field */
ulint* len) /*!< out: length of the field; UNIV_SQL_NULL
if SQL null */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
#define rec_get_nth_field(rec, offsets, n, len) \
((rec) + rec_get_nth_field_offs(offsets, n, len))
/******************************************************//**
Determine if the offsets are for a record containing null BLOB pointers.
@return first field containing a null BLOB pointer, or NULL if none found */
UNIV_INLINE
const byte*
rec_offs_any_null_extern(
/*=====================*/
const rec_t* rec, /*!< in: record */
const rec_offs* offsets) /*!< in: rec_get_offsets(rec) */
MY_ATTRIBUTE((warn_unused_result));
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Mark the nth field as externally stored.
@param[in] offsets array returned by rec_get_offsets()
@param[in] n nth field */
void
rec_offs_make_nth_extern(
rec_offs* offsets,
const ulint n);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
2020-07-02 06:17:51 +03:00
MY_ATTRIBUTE((nonnull))
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Determine the number of allocated elements for an array of offsets.
@param[in] offsets offsets after rec_offs_set_n_alloc()
@return number of elements */
2020-07-02 06:17:51 +03:00
inline ulint rec_offs_get_n_alloc(const rec_offs *offsets)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2020-07-02 06:17:51 +03:00
ut_ad(offsets);
ulint n_alloc= offsets[0];
ut_ad(n_alloc > REC_OFFS_HEADER_SIZE);
MEM_CHECK_ADDRESSABLE(offsets, n_alloc * sizeof *offsets);
return n_alloc;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine the number of fields for which offsets have been initialized.
@param[in] offsets rec_get_offsets()
@return number of fields */
inline
ulint
2020-05-04 16:47:11 +02:00
rec_offs_n_fields(const rec_offs* offsets)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
ulint n_fields;
ut_ad(offsets);
n_fields = offsets[1];
ut_ad(n_fields > 0);
ut_ad(n_fields <= REC_MAX_N_FIELDS);
ut_ad(n_fields + REC_OFFS_HEADER_SIZE
<= rec_offs_get_n_alloc(offsets));
return(n_fields);
}
/** Get a flag of a record field.
@param[in] offsets rec_get_offsets()
@param[in] n nth field
@param[in] flag flag to extract
2019-12-13 10:08:57 +02:00
@return type of the record field */
2020-05-04 16:47:11 +02:00
inline field_type_t rec_offs_nth_type(const rec_offs *offsets, ulint n)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
ut_ad(rec_offs_validate(NULL, NULL, offsets));
ut_ad(n < rec_offs_n_fields(offsets));
return get_type(rec_offs_base(offsets)[1 + n]);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if a record field is missing
(should be replaced by dict_index_t::instant_field_value()).
@param[in] offsets rec_get_offsets()
@param[in] n nth field
@return nonzero if default bit is set */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_nth_default(const rec_offs *offsets, ulint n)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
return rec_offs_nth_type(offsets, n) == DEFAULT;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if a record field is SQL NULL
(should be replaced by dict_index_t::instant_field_value()).
@param[in] offsets rec_get_offsets()
@param[in] n nth field
@return nonzero if SQL NULL set */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_nth_sql_null(const rec_offs *offsets, ulint n)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
return rec_offs_nth_type(offsets, n) == SQL_NULL;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if a record field is stored off-page.
@param[in] offsets rec_get_offsets()
@param[in] n nth field
Returns nonzero if the extern bit is set in nth field of rec.
@return nonzero if externally stored */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_nth_extern(const rec_offs *offsets, ulint n)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
return rec_offs_nth_type(offsets, n) == STORED_OFFPAGE;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Get a global flag of a record.
@param[in] offsets rec_get_offsets()
@param[in] flag flag to extract
@return the flag of the record field */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_any_flag(const rec_offs *offsets, ulint flag)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
ut_ad(rec_offs_validate(NULL, NULL, offsets));
return *rec_offs_base(offsets) & flag;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if the offsets are for a record containing off-page columns.
@param[in] offsets rec_get_offsets()
@return nonzero if any off-page columns exist */
2020-05-04 16:47:11 +02:00
inline bool rec_offs_any_extern(const rec_offs *offsets)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
return rec_offs_any_flag(offsets, REC_OFFS_EXTERNAL);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if the offsets are for a record that is missing fields.
@param[in] offsets rec_get_offsets()
@return nonzero if any fields need to be replaced with
dict_index_t::instant_field_value() */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_any_default(const rec_offs *offsets)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
return rec_offs_any_flag(offsets, REC_OFFS_DEFAULT);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if the offsets are for other than ROW_FORMAT=REDUNDANT.
@param[in] offsets rec_get_offsets()
@return nonzero if ROW_FORMAT is COMPACT,DYNAMIC or COMPRESSED
@retval 0 if ROW_FORMAT=REDUNDANT */
2020-05-04 16:47:11 +02:00
inline ulint rec_offs_comp(const rec_offs *offsets)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
2019-12-13 10:08:57 +02:00
ut_ad(rec_offs_validate(NULL, NULL, offsets));
return (*rec_offs_base(offsets) & REC_OFFS_COMPACT);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
/** Determine if the record is the metadata pseudo-record
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
in the clustered index.
@param[in] rec leaf page record
@param[in] index index of the record
@return whether the record is the metadata pseudo-record */
inline bool rec_is_metadata(const rec_t* rec, const dict_index_t* index)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
{
bool is = rec_get_info_bits(rec, dict_table_is_comp(index->table))
& REC_INFO_MIN_REC_FLAG;
ut_ad(!is || index->is_instant());
ut_ad(!is || !dict_table_is_comp(index->table)
|| rec_get_status(rec) == REC_STATUS_COLUMNS_ADDED);
return is;
}
/** Get the nth field from an index.
@param[in] rec index record
@param[in] index index
@param[in] offsets rec_get_offsets(rec, index)
@param[in] n field number
@param[out] len length of the field in bytes, or UNIV_SQL_NULL
@return a read-only copy of the index field */
inline
const byte*
rec_get_nth_cfield(
const rec_t* rec,
const dict_index_t* index,
2020-05-04 16:47:11 +02:00
const rec_offs* offsets,
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
ulint n,
ulint* len)
{
/* Because this function may be invoked by innobase_rec_to_mysql()
for reporting a duplicate key during ALTER TABLE or
CREATE UNIQUE INDEX, and in that case the rec omit the fixed-size
header of 5 or 6 bytes, the check
rec_offs_validate(rec, index, offsets) must be avoided here. */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
if (!rec_offs_nth_default(offsets, n)) {
return rec_get_nth_field(rec, offsets, n, len);
}
return index->instant_field_value(n, len);
}
/******************************************************//**
Gets the physical size of a field.
@return length of field */
UNIV_INLINE
ulint
rec_offs_nth_size(
/*==============*/
const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */
ulint n) /*!< in: nth field */
MY_ATTRIBUTE((warn_unused_result));
/******************************************************//**
Returns the number of extern bits set in a record.
@return number of externally stored fields */
UNIV_INLINE
ulint
rec_offs_n_extern(
/*==============*/
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
/***********************************************************//**
This is used to modify the value of an already existing field in a record.
The previous value must have exactly the same size as the new value. If len
is UNIV_SQL_NULL then the field is treated as an SQL null.
For records in ROW_FORMAT=COMPACT (new-style records), len must not be
UNIV_SQL_NULL unless the field already is SQL null. */
UNIV_INLINE
void
rec_set_nth_field(
/*==============*/
rec_t* rec, /*!< in: record */
const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */
ulint n, /*!< in: index number of the field */
const void* data, /*!< in: pointer to the data if not SQL null */
ulint len) /*!< in: length of the data or UNIV_SQL_NULL.
If not SQL null, must have the same
length as the previous value.
If SQL null, previous value must be
SQL null. */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull(1,2)));
/**********************************************************//**
The following function returns the data size of an old-style physical
record, that is the sum of field lengths. SQL null fields
are counted as length 0 fields. The value returned by the function
is the distance from record origin to record end in bytes.
@return size */
UNIV_INLINE
ulint
rec_get_data_size_old(
/*==================*/
const rec_t* rec) /*!< in: physical record */
MY_ATTRIBUTE((warn_unused_result));
/**********************************************************//**
The following function sets the number of allocated elements
for an array of offsets. */
UNIV_INLINE
void
rec_offs_set_n_alloc(
/*=================*/
rec_offs*offsets, /*!< out: array for rec_get_offsets(),
must be allocated */
ulint n_alloc) /*!< in: number of elements */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
#define rec_offs_init(offsets) \
rec_offs_set_n_alloc(offsets, (sizeof offsets) / sizeof *offsets)
/**********************************************************//**
The following function returns the data size of a physical
record, that is the sum of field lengths. SQL null fields
are counted as length 0 fields. The value returned by the function
is the distance from record origin to record end in bytes.
@return size */
UNIV_INLINE
ulint
rec_offs_data_size(
/*===============*/
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
/**********************************************************//**
Returns the total size of record minus data size of record.
The value returned by the function is the distance from record
start to record origin in bytes.
@return size */
UNIV_INLINE
ulint
rec_offs_extra_size(
/*================*/
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
/**********************************************************//**
Returns the total size of a physical record.
@return size */
UNIV_INLINE
ulint
rec_offs_size(
/*==========*/
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
#ifdef UNIV_DEBUG
/**********************************************************//**
Returns a pointer to the start of the record.
@return pointer to start */
UNIV_INLINE
byte*
rec_get_start(
/*==========*/
const rec_t* rec, /*!< in: pointer to record */
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
/**********************************************************//**
Returns a pointer to the end of the record.
@return pointer to end */
UNIV_INLINE
byte*
rec_get_end(
/*========*/
const rec_t* rec, /*!< in: pointer to record */
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((warn_unused_result));
#else /* UNIV_DEBUG */
# define rec_get_start(rec, offsets) ((rec) - rec_offs_extra_size(offsets))
# define rec_get_end(rec, offsets) ((rec) + rec_offs_data_size(offsets))
#endif /* UNIV_DEBUG */
/** Copy a physical record to a buffer.
@param[in] buf buffer
@param[in] rec physical record
@param[in] offsets array returned by rec_get_offsets()
@return pointer to the origin of the copy */
UNIV_INLINE
rec_t*
rec_copy(
void* buf,
const rec_t* rec,
const rec_offs* offsets);
/** Determine the size of a data tuple prefix in a temporary file.
@param[in] index clustered or secondary index
@param[in] fields data fields
@param[in] n_fields number of data fields
@param[out] extra record header size
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
@param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED
@return total size, in bytes */
ulint
rec_get_converted_size_temp(
const dict_index_t* index,
const dfield_t* fields,
ulint n_fields,
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
ulint* extra,
rec_comp_status_t status = REC_STATUS_ORDINARY)
MY_ATTRIBUTE((warn_unused_result, nonnull));
/** Determine the offset to each field in temporary file.
@param[in] rec temporary file record
@param[in] index index of that the record belongs to
@param[in,out] offsets offsets to the fields; in: rec_offs_n_fields(offsets)
@param[in] n_core number of core fields (index->n_core_fields)
MDEV-16131 Assertion failed in dict_index_t::instant_field_value() During a table-rebuilding online ALTER TABLE, if dict_index_t::remove_instant() was invoked on the source table (because it became empty), we would inadvertently change the way how log records are written and parsed. We must keep the online_log format unchanged throughout the whole table-rebuilding operation. dict_col_t::def_t: Name the type of dict_col_t::def_val. rec_get_n_add_field_len(), rec_set_n_add_field(): Define globally, because these will be needed in row_log_table_low(). rec_init_offsets_temp(), rec_init_offsets_comp_ordinary(): Add the parameter def_val for explicitly passing the default values of the instantly added columns of the source table, so that dict_index_t::instant_field_value() will not be called during row_log_table_apply(). This allows us to consistently parse the online_log records, even if the source table was converted to the canonical non-instant format during the rebuild operation. row_log_t::non_core_fields[]: The default values of the instantly added columns on the source table; copied during ha_innobase::prepare_inplace_alter_table() while the table is exclusively locked. row_log_t::instant_field_value(): Accessor to non_core_fields[], analogous to dict_index_t::instant_field_value(). row_log_table_low(): Add fake_extra_size bytes to the record header if the source table was converted to the canonical format during the operation. row_log_allocate(): Initialize row_log_t::non_core_fields.
2018-07-26 22:52:53 +03:00
@param[in] def_val default values for non-core fields
@param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
void
rec_init_offsets_temp(
const rec_t* rec,
const dict_index_t* index,
2020-05-04 16:47:11 +02:00
rec_offs* offsets,
ulint n_core,
MDEV-16131 Assertion failed in dict_index_t::instant_field_value() During a table-rebuilding online ALTER TABLE, if dict_index_t::remove_instant() was invoked on the source table (because it became empty), we would inadvertently change the way how log records are written and parsed. We must keep the online_log format unchanged throughout the whole table-rebuilding operation. dict_col_t::def_t: Name the type of dict_col_t::def_val. rec_get_n_add_field_len(), rec_set_n_add_field(): Define globally, because these will be needed in row_log_table_low(). rec_init_offsets_temp(), rec_init_offsets_comp_ordinary(): Add the parameter def_val for explicitly passing the default values of the instantly added columns of the source table, so that dict_index_t::instant_field_value() will not be called during row_log_table_apply(). This allows us to consistently parse the online_log records, even if the source table was converted to the canonical non-instant format during the rebuild operation. row_log_t::non_core_fields[]: The default values of the instantly added columns on the source table; copied during ha_innobase::prepare_inplace_alter_table() while the table is exclusively locked. row_log_t::instant_field_value(): Accessor to non_core_fields[], analogous to dict_index_t::instant_field_value(). row_log_table_low(): Add fake_extra_size bytes to the record header if the source table was converted to the canonical format during the operation. row_log_allocate(): Initialize row_log_t::non_core_fields.
2018-07-26 22:52:53 +03:00
const dict_col_t::def_t*def_val,
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
rec_comp_status_t status = REC_STATUS_ORDINARY)
MY_ATTRIBUTE((nonnull(1,2,3)));
/** Determine the offset to each field in temporary file.
@param[in] rec temporary file record
@param[in] index index of that the record belongs to
@param[in,out] offsets offsets to the fields; in: rec_offs_n_fields(offsets)
*/
void
rec_init_offsets_temp(
const rec_t* rec,
const dict_index_t* index,
2020-05-04 16:47:11 +02:00
rec_offs* offsets)
MY_ATTRIBUTE((nonnull));
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Convert a data tuple prefix to the temporary file format.
@param[out] rec record in temporary file format
@param[in] index clustered or secondary index
@param[in] fields data fields
@param[in] n_fields number of data fields
@param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED
*/
void
rec_convert_dtuple_to_temp(
rec_t* rec,
const dict_index_t* index,
const dfield_t* fields,
ulint n_fields,
rec_comp_status_t status = REC_STATUS_ORDINARY)
MY_ATTRIBUTE((nonnull));
/**************************************************************//**
Copies the first n fields of a physical record to a new physical record in
a buffer.
@return own: copied record */
rec_t*
rec_copy_prefix_to_buf(
/*===================*/
const rec_t* rec, /*!< in: physical record */
const dict_index_t* index, /*!< in: record descriptor */
ulint n_fields, /*!< in: number of fields
to copy */
byte** buf, /*!< in/out: memory buffer
for the copied prefix,
or NULL */
ulint* buf_size) /*!< in/out: buffer size */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/*********************************************************//**
Builds a physical record out of a data tuple and
stores it into the given buffer.
@return pointer to the origin of physical record */
rec_t*
rec_convert_dtuple_to_rec(
/*======================*/
byte* buf, /*!< in: start address of the
physical record */
const dict_index_t* index, /*!< in: record descriptor */
const dtuple_t* dtuple, /*!< in: data tuple */
ulint n_ext) /*!< in: number of
externally stored columns */
MY_ATTRIBUTE((warn_unused_result));
/**********************************************************//**
Returns the extra size of an old-style physical record if we know its
data size and number of fields.
@return extra size */
UNIV_INLINE
ulint
rec_get_converted_extra_size(
/*=========================*/
ulint data_size, /*!< in: data size */
ulint n_fields, /*!< in: number of fields */
ulint n_ext) /*!< in: number of externally stored columns */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((const));
/**********************************************************//**
Determines the size of a data tuple prefix in ROW_FORMAT=COMPACT.
@return total size */
ulint
rec_get_converted_size_comp_prefix(
/*===============================*/
const dict_index_t* index, /*!< in: record descriptor */
const dfield_t* fields, /*!< in: array of data fields */
ulint n_fields,/*!< in: number of data fields */
ulint* extra) /*!< out: extra size */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((warn_unused_result, nonnull(1,2)));
/**********************************************************//**
Determines the size of a data tuple in ROW_FORMAT=COMPACT.
@return total size */
ulint
rec_get_converted_size_comp(
/*========================*/
const dict_index_t* index, /*!< in: record descriptor;
dict_table_is_comp() is
assumed to hold, even if
it does not */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
rec_comp_status_t status, /*!< in: status bits of the record */
const dfield_t* fields, /*!< in: array of data fields */
ulint n_fields,/*!< in: number of data fields */
ulint* extra) /*!< out: extra size */
MY_ATTRIBUTE((nonnull(1,3)));
/**********************************************************//**
The following function returns the size of a data tuple when converted to
a physical record.
@return size */
UNIV_INLINE
ulint
rec_get_converted_size(
/*===================*/
dict_index_t* index, /*!< in: record descriptor */
const dtuple_t* dtuple, /*!< in: data tuple */
ulint n_ext) /*!< in: number of externally stored columns */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((warn_unused_result, nonnull));
/** Copy the first n fields of a (copy of a) physical record to a data tuple.
The fields are copied into the memory heap.
@param[out] tuple data tuple
@param[in] rec index record, or a copy thereof
@param[in] is_leaf whether rec is a leaf page record
@param[in] n_fields number of fields to copy
@param[in,out] heap memory heap */
void
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
rec_copy_prefix_to_dtuple(
dtuple_t* tuple,
const rec_t* rec,
const dict_index_t* index,
bool is_leaf,
ulint n_fields,
mem_heap_t* heap)
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/***************************************************************//**
Validates the consistency of a physical record.
@return TRUE if ok */
ibool
rec_validate(
/*=========*/
const rec_t* rec, /*!< in: physical record */
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/***************************************************************//**
Prints an old-style physical record. */
void
rec_print_old(
/*==========*/
FILE* file, /*!< in: file where to print */
const rec_t* rec) /*!< in: physical record */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/***************************************************************//**
Prints a spatial index record. */
void
rec_print_mbr_rec(
/*==========*/
FILE* file, /*!< in: file where to print */
const rec_t* rec, /*!< in: physical record */
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
MY_ATTRIBUTE((nonnull));
/***************************************************************//**
Prints a physical record. */
void
rec_print_new(
/*==========*/
FILE* file, /*!< in: file where to print */
const rec_t* rec, /*!< in: physical record */
const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/***************************************************************//**
Prints a physical record. */
void
rec_print(
/*======*/
FILE* file, /*!< in: file where to print */
const rec_t* rec, /*!< in: physical record */
const dict_index_t* index) /*!< in: record descriptor */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/** Pretty-print a record.
@param[in,out] o output stream
@param[in] rec physical record
@param[in] info rec_get_info_bits(rec)
@param[in] offsets rec_get_offsets(rec) */
void
rec_print(
std::ostream& o,
const rec_t* rec,
ulint info,
const rec_offs* offsets);
/** Wrapper for pretty-printing a record */
struct rec_index_print
{
/** Constructor */
rec_index_print(const rec_t* rec, const dict_index_t* index) :
m_rec(rec), m_index(index)
{}
/** Record */
const rec_t* m_rec;
/** Index */
const dict_index_t* m_index;
};
/** Display a record.
@param[in,out] o output stream
@param[in] r record to display
@return the output stream */
std::ostream&
operator<<(std::ostream& o, const rec_index_print& r);
/** Wrapper for pretty-printing a record */
struct rec_offsets_print
{
/** Constructor */
rec_offsets_print(const rec_t* rec, const rec_offs* offsets) :
m_rec(rec), m_offsets(offsets)
{}
/** Record */
const rec_t* m_rec;
/** Offsets to each field */
const rec_offs* m_offsets;
};
/** Display a record.
@param[in,out] o output stream
@param[in] r record to display
@return the output stream */
ATTRIBUTE_COLD
std::ostream&
operator<<(std::ostream& o, const rec_offsets_print& r);
/** Pretty-printer of records and tuples */
class rec_printer : public std::ostringstream {
public:
/** Construct a pretty-printed record.
@param rec record with header
@param offsets rec_get_offsets(rec, ...) */
ATTRIBUTE_COLD
rec_printer(const rec_t* rec, const rec_offs* offsets)
:
std::ostringstream ()
{
rec_print(*this, rec,
rec_get_info_bits(rec, rec_offs_comp(offsets)),
offsets);
}
/** Construct a pretty-printed record.
@param rec record, possibly lacking header
@param info rec_get_info_bits(rec)
@param offsets rec_get_offsets(rec, ...) */
ATTRIBUTE_COLD
rec_printer(const rec_t* rec, ulint info, const rec_offs* offsets)
:
std::ostringstream ()
{
rec_print(*this, rec, info, offsets);
}
/** Construct a pretty-printed tuple.
@param tuple data tuple */
ATTRIBUTE_COLD
rec_printer(const dtuple_t* tuple)
:
std::ostringstream ()
{
dtuple_print(*this, tuple);
}
/** Construct a pretty-printed tuple.
@param field array of data tuple fields
@param n number of fields */
ATTRIBUTE_COLD
rec_printer(const dfield_t* field, ulint n)
:
std::ostringstream ()
{
dfield_print(*this, field, n);
}
/** Destructor */
virtual ~rec_printer() {}
private:
/** Copy constructor */
rec_printer(const rec_printer& other);
/** Assignment operator */
rec_printer& operator=(const rec_printer& other);
};
# ifdef UNIV_DEBUG
/** Read the DB_TRX_ID of a clustered index record.
@param[in] rec clustered index record
@param[in] index clustered index
@return the value of DB_TRX_ID */
trx_id_t
rec_get_trx_id(
const rec_t* rec,
const dict_index_t* index)
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull, warn_unused_result));
# endif /* UNIV_DEBUG */
/* Maximum lengths for the data in a physical record if the offsets
are given in one byte (resp. two byte) format. */
#define REC_1BYTE_OFFS_LIMIT 0x7FUL
#define REC_2BYTE_OFFS_LIMIT 0x7FFFUL
/* The data size of record must not be larger than this on
REDUNDANT row format because we reserve two upmost bits in a
two byte offset for special purposes */
2017-08-17 11:32:16 +02:00
#define REDUNDANT_REC_MAX_DATA_SIZE (16383)
/* The data size of record must be smaller than this on
COMPRESSED row format because we reserve two upmost bits in a
two byte offset for special purposes */
2017-08-17 11:32:16 +02:00
#define COMPRESSED_REC_MAX_DATA_SIZE (16384)
#ifdef WITH_WSREP
int wsrep_rec_get_foreign_key(
byte *buf, /* out: extracted key */
ulint *buf_len, /* in/out: length of buf */
const rec_t* rec, /* in: physical record */
dict_index_t* index_for, /* in: index for foreign table */
dict_index_t* index_ref, /* in: index for referenced table */
ibool new_protocol); /* in: protocol > 1 */
#endif /* WITH_WSREP */
#include "rem0rec.ic"
#endif /* !UNIV_INNOCHECKSUM */
#endif /* rem0rec_h */