mariadb/storage/innobase/include/buf0buf.h

2337 lines
77 KiB
C
Raw Normal View History

/*****************************************************************************
2016-06-21 14:21:03 +02:00
Copyright (c) 1995, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2013, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file include/buf0buf.h
The database buffer pool high-level routines
Created 11/5/1995 Heikki Tuuri
*******************************************************/
#ifndef buf0buf_h
#define buf0buf_h
/** Magic value to use instead of checksums when they are disabled */
#define BUF_NO_CHECKSUM_MAGIC 0xDEADBEEFUL
#include "fil0fil.h"
#include "mtr0types.h"
#include "buf0types.h"
#include "span.h"
#ifndef UNIV_INNOCHECKSUM
#include "hash0hash.h"
#include "ut0byte.h"
#include "page0types.h"
#include "ut0rbt.h"
#include "os0proc.h"
#include "log0log.h"
#include "srv0srv.h"
#include <ostream>
// Forward declaration
struct fil_addr_t;
/** @name Modes for buf_page_get_gen */
/* @{ */
#define BUF_GET 10 /*!< get always */
#define BUF_GET_IF_IN_POOL 11 /*!< get if in pool */
#define BUF_PEEK_IF_IN_POOL 12 /*!< get if in pool, do not make
the block young in the LRU list */
#define BUF_GET_NO_LATCH 14 /*!< get and bufferfix, but
set no latch; we have
separated this case, because
it is error-prone programming
not to set a latch, and it
should be used with care */
#define BUF_GET_IF_IN_POOL_OR_WATCH 15
/*!< Get the page only if it's in the
buffer pool, if not then set a watch
on the page. */
#define BUF_GET_POSSIBLY_FREED 16
/*!< Like BUF_GET, but do not mind
if the file page has been freed. */
MDEV-13328 ALTER TABLE…DISCARD TABLESPACE takes a lot of time With a big buffer pool that contains many data pages, DISCARD TABLESPACE took a long time, because it would scan the entire buffer pool to remove any pages that belong to the tablespace. With a large buffer pool, this would take a lot of time, especially when the table-to-discard is empty. The minimum amount of work that DISCARD TABLESPACE must do is to remove the pages of the to-be-discarded table from the buf_pool->flush_list because any writes to the data file must be prevented before the file is deleted. If DISCARD TABLESPACE does not evict the pages from the buffer pool, then IMPORT TABLESPACE must do it, because we must prevent pre-DISCARD, not-yet-evicted pages from being mistaken for pages of the imported tablespace. It would not be a useful fix to simply move the buffer pool scan to the IMPORT TABLESPACE step. What we can do is to actively evict those pages that could be mistaken for imported pages. In this way, when importing a small table into a big buffer pool, the import should still run relatively fast. Import is bypassing the buffer pool when reading pages for the adjustment phase. In the adjustment phase, if a page exists in the buffer pool, we could replace it with the page from the imported file. Unfortunately I did not get this to work properly, so instead we will simply evict any matching page from the buffer pool. buf_page_get_gen(): Implement BUF_EVICT_IF_IN_POOL, a new mode where the requested page will be evicted if it is found. There must be no unwritten changes for the page. buf_remove_t: Remove. Instead, use trx!=NULL to signify that a write to file is desired, and use a separate parameter bool drop_ahi. buf_LRU_flush_or_remove_pages(), fil_delete_tablespace(): Replace buf_remove_t. buf_LRU_remove_pages(), buf_LRU_remove_all_pages(): Remove. PageConverter::m_mtr: A dummy mini-transaction buffer PageConverter::PageConverter(): Complete the member initialization list. PageConverter::operator()(): Evict any 'shadow' pages from the buffer pool so that pre-existing (garbage) pages cannot be mistaken for pages that exist in the being-imported file. row_discard_tablespace(): Remove a bogus comment that seems to refer to IMPORT TABLESPACE, not DISCARD TABLESPACE.
2017-11-02 22:38:37 +02:00
#define BUF_EVICT_IF_IN_POOL 20 /*!< evict a clean block if found */
/* @} */
#define BUF_POOL_WATCH_SIZE (srv_n_purge_threads + 1)
/*!< Maximum number of concurrent
buffer pool watches */
#define MAX_PAGE_HASH_LOCKS 1024 /*!< The maximum number of
page_hash locks */
# ifdef UNIV_DEBUG
extern my_bool buf_disable_resize_buffer_pool_debug; /*!< if TRUE, resizing
buffer pool is not allowed. */
# endif /* UNIV_DEBUG */
/** @brief States of a control block
@see buf_page_t
The enumeration values must be 0..7. */
enum buf_page_state {
BUF_BLOCK_POOL_WATCH, /*!< a sentinel for the buffer pool
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
watch, element of buf_pool.watch[] */
BUF_BLOCK_ZIP_PAGE, /*!< contains a clean
compressed page */
BUF_BLOCK_ZIP_DIRTY, /*!< contains a compressed
page that is in the
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.flush_list */
BUF_BLOCK_NOT_USED, /*!< is in the free list;
must be after the BUF_BLOCK_ZIP_
constants for compressed-only pages
@see buf_block_state_valid() */
BUF_BLOCK_READY_FOR_USE, /*!< when buf_LRU_get_free_block
returns a block, it is in this state */
BUF_BLOCK_FILE_PAGE, /*!< contains a buffered file page */
BUF_BLOCK_MEMORY, /*!< contains some main memory
object */
BUF_BLOCK_REMOVE_HASH /*!< hash index should be removed
before putting to the free list */
};
/** This structure defines information we will fetch from each buffer pool. It
will be used to print table IO stats */
struct buf_pool_info_t
{
/* General buffer pool info */
ulint pool_size; /*!< Buffer Pool size in pages */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint lru_len; /*!< Length of buf_pool.LRU */
ulint old_lru_len; /*!< buf_pool.LRU_old_len */
ulint free_list_len; /*!< Length of buf_pool.free list */
ulint flush_list_len; /*!< Length of buf_pool.flush_list */
ulint n_pend_unzip; /*!< buf_pool.n_pend_unzip, pages
pending decompress */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint n_pend_reads; /*!< buf_pool.n_pend_reads, pages
pending read */
ulint n_pending_flush_lru; /*!< Pages pending flush in LRU */
ulint n_pending_flush_single_page;/*!< Pages pending to be
flushed as part of single page
flushes issued by various user
threads */
ulint n_pending_flush_list; /*!< Pages pending flush in FLUSH
LIST */
ulint n_pages_made_young; /*!< number of pages made young */
ulint n_pages_not_made_young; /*!< number of pages not made young */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint n_pages_read; /*!< buf_pool.n_pages_read */
ulint n_pages_created; /*!< buf_pool.n_pages_created */
ulint n_pages_written; /*!< buf_pool.n_pages_written */
ulint n_page_gets; /*!< buf_pool.n_page_gets */
ulint n_ra_pages_read_rnd; /*!< buf_pool.n_ra_pages_read_rnd,
number of pages readahead */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint n_ra_pages_read; /*!< buf_pool.n_ra_pages_read, number
of pages readahead */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint n_ra_pages_evicted; /*!< buf_pool.n_ra_pages_evicted,
number of readahead pages evicted
without access */
ulint n_page_get_delta; /*!< num of buffer pool page gets since
last printout */
/* Buffer pool access stats */
double page_made_young_rate; /*!< page made young rate in pages
per second */
double page_not_made_young_rate;/*!< page not made young rate
in pages per second */
double pages_read_rate; /*!< num of pages read per second */
double pages_created_rate; /*!< num of pages create per second */
double pages_written_rate; /*!< num of pages written per second */
ulint page_read_delta; /*!< num of pages read since last
printout */
ulint young_making_delta; /*!< num of pages made young since
last printout */
ulint not_young_making_delta; /*!< num of pages not make young since
last printout */
/* Statistics about read ahead algorithm. */
double pages_readahead_rnd_rate;/*!< random readahead rate in pages per
second */
double pages_readahead_rate; /*!< readahead rate in pages per
second */
double pages_evicted_rate; /*!< rate of readahead page evicted
without access, in pages per second */
/* Stats about LRU eviction */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ulint unzip_lru_len; /*!< length of buf_pool.unzip_LRU
list */
/* Counters for LRU policy */
ulint io_sum; /*!< buf_LRU_stat_sum.io */
ulint io_cur; /*!< buf_LRU_stat_cur.io, num of IO
for current interval */
ulint unzip_sum; /*!< buf_LRU_stat_sum.unzip */
ulint unzip_cur; /*!< buf_LRU_stat_cur.unzip, num
pages decompressed in current
interval */
};
#endif /* !UNIV_INNOCHECKSUM */
/** Print the given page_id_t object.
@param[in,out] out the output stream
@param[in] page_id the page_id_t object to be printed
@return the output stream */
std::ostream&
operator<<(
std::ostream& out,
const page_id_t page_id);
#ifndef UNIV_INNOCHECKSUM
/*********************************************************************//**
Gets the current size of buffer buf_pool in bytes.
@return size in bytes */
UNIV_INLINE
ulint
buf_pool_get_curr_size(void);
/*========================*/
/**
@return the smallest oldest_modification lsn for any page.
@retval 0 if all modified persistent pages have been flushed */
lsn_t
buf_pool_get_oldest_modification();
/********************************************************************//**
Allocates a buf_page_t descriptor. This function must succeed. In case
of failure we assert in this function. */
UNIV_INLINE
buf_page_t*
buf_page_alloc_descriptor(void)
/*===========================*/
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((malloc));
/********************************************************************//**
Free a buf_page_t descriptor. */
UNIV_INLINE
void
buf_page_free_descriptor(
/*=====================*/
buf_page_t* bpage) /*!< in: bpage descriptor to free. */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/** Allocate a buffer block.
@return own: the allocated block, in state BUF_BLOCK_MEMORY */
buf_block_t*
buf_block_alloc();
/********************************************************************//**
Frees a buffer block which does not contain a file page. */
UNIV_INLINE
void
buf_block_free(
/*===========*/
buf_block_t* block); /*!< in, own: block to be freed */
/**************************************************************//**
NOTE! The following macros should be used instead of buf_page_get_gen,
to improve debugging. Only values RW_S_LATCH and RW_X_LATCH are allowed
in LA! */
#define buf_page_get(ID, SIZE, LA, MTR) \
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
buf_page_get_gen(ID, SIZE, LA, NULL, BUF_GET, __FILE__, __LINE__, MTR)
/**************************************************************//**
Use these macros to bufferfix a page with no latching. Remember not to
read the contents of the page unless you know it is safe. Do not modify
the contents of the page! We have separated this case, because it is
error-prone programming not to set a latch, and it should be used
with care. */
#define buf_page_get_with_no_latch(ID, SIZE, MTR) \
buf_page_get_gen(ID, SIZE, RW_NO_LATCH, NULL, BUF_GET_NO_LATCH, \
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
__FILE__, __LINE__, MTR)
/********************************************************************//**
This is the general function used to get optimistic access to a database
page.
@return TRUE if success */
ibool
buf_page_optimistic_get(
/*====================*/
ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH */
buf_block_t* block, /*!< in: guessed block */
ib_uint64_t modify_clock,/*!< in: modify clock value */
const char* file, /*!< in: file name */
unsigned line, /*!< in: line where called */
mtr_t* mtr); /*!< in: mini-transaction */
/** Given a tablespace id and page number tries to get that page. If the
page is not in the buffer pool it is not loaded and NULL is returned.
Suitable for using when holding the lock_sys_t::mutex.
@param[in] page_id page id
@param[in] file file name
@param[in] line line where called
@param[in] mtr mini-transaction
@return pointer to a page or NULL */
2014-12-22 16:53:17 +02:00
buf_block_t*
buf_page_try_get_func(
const page_id_t page_id,
const char* file,
unsigned line,
mtr_t* mtr);
/** Tries to get a page.
If the page is not in the buffer pool it is not loaded. Suitable for using
when holding the lock_sys_t::mutex.
@param[in] page_id page identifier
@param[in] mtr mini-transaction
@return the page if in buffer pool, NULL if not */
#define buf_page_try_get(page_id, mtr) \
buf_page_try_get_func((page_id), __FILE__, __LINE__, mtr);
/** Get read access to a compressed page (usually of type
FIL_PAGE_TYPE_ZBLOB or FIL_PAGE_TYPE_ZBLOB2).
The page must be released with buf_page_release_zip().
NOTE: the page is not protected by any latch. Mutual exclusion has to
be implemented at a higher level. In other words, all possible
accesses to a given page through this function must be protected by
the same set of mutexes or latches.
@param[in] page_id page id
@param[in] zip_size ROW_FORMAT=COMPRESSED page size
@return pointer to the block */
buf_page_t* buf_page_get_zip(const page_id_t page_id, ulint zip_size);
2020-03-30 18:52:17 +03:00
/** Get access to a database page. Buffered redo log may be applied.
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
@param[in] page_id page id
@param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0
@param[in] rw_latch RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH
@param[in] guess guessed block or NULL
@param[in] mode BUF_GET, BUF_GET_IF_IN_POOL,
BUF_PEEK_IF_IN_POOL, BUF_GET_NO_LATCH, or BUF_GET_IF_IN_POOL_OR_WATCH
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
@param[in] file file name
@param[in] line line where called
@param[in] mtr mini-transaction
@param[out] err DB_SUCCESS or error code
@param[in] allow_ibuf_merge Allow change buffer merge while
reading the pages from file.
@return pointer to the block or NULL */
buf_block_t*
buf_page_get_gen(
const page_id_t page_id,
ulint zip_size,
ulint rw_latch,
buf_block_t* guess,
ulint mode,
const char* file,
unsigned line,
mtr_t* mtr,
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
dberr_t* err = NULL,
bool allow_ibuf_merge = false);
2020-03-30 18:52:17 +03:00
/** This is the low level function used to get access to a database page.
@param[in] page_id page id
@param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0
@param[in] rw_latch RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH
@param[in] guess guessed block or NULL
@param[in] mode BUF_GET, BUF_GET_IF_IN_POOL,
BUF_PEEK_IF_IN_POOL, BUF_GET_NO_LATCH, or BUF_GET_IF_IN_POOL_OR_WATCH
2020-03-30 18:52:17 +03:00
@param[in] file file name
@param[in] line line where called
@param[in] mtr mini-transaction
@param[out] err DB_SUCCESS or error code
@param[in] allow_ibuf_merge Allow change buffer merge to happen
while reading the page from file
then it makes sure that it does merging of change buffer changes while
reading the page from file.
@return pointer to the block or NULL */
buf_block_t*
buf_page_get_low(
const page_id_t page_id,
2020-03-30 14:50:23 +03:00
ulint zip_size,
ulint rw_latch,
buf_block_t* guess,
ulint mode,
const char* file,
unsigned line,
mtr_t* mtr,
2020-03-30 18:52:17 +03:00
dberr_t* err,
bool allow_ibuf_merge);
/** Initialize a page in the buffer pool. The page is usually not read
from a file even if it cannot be found in the buffer buf_pool. This is one
of the functions which perform to a block a state transition NOT_USED =>
FILE_PAGE (the other is buf_page_get_gen).
@param[in] page_id page id
@param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0
@param[in,out] mtr mini-transaction
@return pointer to the block, page bufferfixed */
buf_block_t*
MDEV-15528 Punch holes when pages are freed When a InnoDB data file page is freed, its contents becomes garbage, and any storage allocated in the data file is wasted. During flushing, InnoDB initializes the page with zeros if scrubbing is enabled. If the tablespace is compressed then InnoDB should punch a hole else ignore the flushing of the freed page. buf_page_t: - Replaced the variable file_page_was_freed, init_on_flush in buf_page_t with status enum variable. - Changed all debug assert of file_page_was_freed to DBUG_ASSERT of buf_page_t::status Removed buf_page_set_file_page_was_freed(), buf_page_reset_file_page_was_freed(). buf_page_free(): Newly added function which takes X-lock on the page before marking the status as FREED. So that InnoDB flush handler can avoid concurrent flush of the freed page. Also while flushing the page, InnoDB make sure that redo log which does freeing of the page also written to the disk. Currently, this function only marks the page as FREED if it is in buffer pool buf_flush_freed_page(): Newly added function which initializes zeros asynchorously if innodb_immediate_scrub_data_uncompressed is enabled. Punch a hole to the file synchorously if page_compressed is enabled. Reset the io_fix to NORMAL. Release the block from flush list and associated mutex before writing zeros or punch a hole to the file. buf_flush_page(): Removed the unnecessary usage of temporary variable "flush" fil_io(): Introduce new parameter called punch_hole. It allows fil_io() to punch the hole to the file for the given offset. buf_page_create(): Let the callers assign buf_page_t::status. Every caller should eventually invoke mtr_t::init(). fsp_page_create(): Remove the unused mtr_t parameter. In all other callers of buf_page_create() except fsp_page_create(), before invoking mtr_t::init(), invoke mtr_t::sx_latch_at_savepoint() or mtr_t::x_latch_at_savepoint(). mtr_t::init(): Initialize buf_page_t::status also for the temporary tablespace (when redo logging is disabled), to avoid assertion failures.
2020-03-09 13:25:33 +05:30
buf_page_create(const page_id_t page_id, ulint zip_size, mtr_t *mtr);
/********************************************************************//**
Releases a compressed-only page acquired with buf_page_get_zip(). */
UNIV_INLINE
void
buf_page_release_zip(
/*=================*/
buf_page_t* bpage); /*!< in: buffer block */
/********************************************************************//**
Releases a latch, if specified. */
UNIV_INLINE
void
buf_page_release_latch(
/*=====================*/
buf_block_t* block, /*!< in: buffer block */
ulint rw_latch); /*!< in: RW_S_LATCH, RW_X_LATCH,
RW_NO_LATCH */
/********************************************************************//**
Moves a page to the start of the buffer pool LRU list. This high-level
function can be used to prevent an important page from slipping out of
the buffer pool. */
void
buf_page_make_young(
/*================*/
buf_page_t* bpage); /*!< in: buffer block of a file page */
MDEV-15528 Punch holes when pages are freed When a InnoDB data file page is freed, its contents becomes garbage, and any storage allocated in the data file is wasted. During flushing, InnoDB initializes the page with zeros if scrubbing is enabled. If the tablespace is compressed then InnoDB should punch a hole else ignore the flushing of the freed page. buf_page_t: - Replaced the variable file_page_was_freed, init_on_flush in buf_page_t with status enum variable. - Changed all debug assert of file_page_was_freed to DBUG_ASSERT of buf_page_t::status Removed buf_page_set_file_page_was_freed(), buf_page_reset_file_page_was_freed(). buf_page_free(): Newly added function which takes X-lock on the page before marking the status as FREED. So that InnoDB flush handler can avoid concurrent flush of the freed page. Also while flushing the page, InnoDB make sure that redo log which does freeing of the page also written to the disk. Currently, this function only marks the page as FREED if it is in buffer pool buf_flush_freed_page(): Newly added function which initializes zeros asynchorously if innodb_immediate_scrub_data_uncompressed is enabled. Punch a hole to the file synchorously if page_compressed is enabled. Reset the io_fix to NORMAL. Release the block from flush list and associated mutex before writing zeros or punch a hole to the file. buf_flush_page(): Removed the unnecessary usage of temporary variable "flush" fil_io(): Introduce new parameter called punch_hole. It allows fil_io() to punch the hole to the file for the given offset. buf_page_create(): Let the callers assign buf_page_t::status. Every caller should eventually invoke mtr_t::init(). fsp_page_create(): Remove the unused mtr_t parameter. In all other callers of buf_page_create() except fsp_page_create(), before invoking mtr_t::init(), invoke mtr_t::sx_latch_at_savepoint() or mtr_t::x_latch_at_savepoint(). mtr_t::init(): Initialize buf_page_t::status also for the temporary tablespace (when redo logging is disabled), to avoid assertion failures.
2020-03-09 13:25:33 +05:30
/** Mark the page status as FREED for the given tablespace id and
page number. If the page is not in buffer pool then ignore it.
@param[in] page_id page_id
@param[in,out] mtr mini-transaction
@param[in] file file name
@param[in] line line where called */
void buf_page_free(const page_id_t page_id,
mtr_t *mtr,
const char *file,
unsigned line);
/********************************************************************//**
Reads the freed_page_clock of a buffer block.
@return freed_page_clock */
UNIV_INLINE
unsigned
buf_page_get_freed_page_clock(
/*==========================*/
const buf_page_t* bpage) /*!< in: block */
MY_ATTRIBUTE((warn_unused_result));
/********************************************************************//**
Reads the freed_page_clock of a buffer block.
@return freed_page_clock */
UNIV_INLINE
unsigned
buf_block_get_freed_page_clock(
/*===========================*/
const buf_block_t* block) /*!< in: block */
MY_ATTRIBUTE((warn_unused_result));
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
/** Determine if a block is still close enough to the MRU end of the LRU list
meaning that it is not in danger of getting evicted and also implying
that it has been accessed recently.
Note that this is for heuristics only and does not reserve buffer pool
mutex.
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
@param[in] bpage buffer pool page
@return whether bpage is close to MRU end of LRU */
inline bool buf_page_peek_if_young(const buf_page_t *bpage);
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
/** Determine if a block should be moved to the start of the LRU list if
there is danger of dropping from the buffer pool.
@param[in] bpage buffer pool page
@return true if bpage should be made younger */
inline bool buf_page_peek_if_too_old(const buf_page_t *bpage);
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
/** Move a page to the start of the buffer pool LRU list if it is too old.
@param[in,out] bpage buffer pool page */
inline void buf_page_make_young_if_needed(buf_page_t *bpage)
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
{
if (UNIV_UNLIKELY(buf_page_peek_if_too_old(bpage))) {
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
buf_page_make_young(bpage);
}
}
/********************************************************************//**
Increments the modify clock of a frame by 1. The caller must (1) own the
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.mutex and block bufferfix count has to be zero, (2) or own an x-lock
on the block. */
UNIV_INLINE
void
buf_block_modify_clock_inc(
/*=======================*/
buf_block_t* block); /*!< in: block */
/********************************************************************//**
Returns the value of the modify clock. The caller must have an s-lock
or x-lock on the block.
@return value */
UNIV_INLINE
ib_uint64_t
buf_block_get_modify_clock(
/*=======================*/
buf_block_t* block); /*!< in: block */
/*******************************************************************//**
Increments the bufferfix count. */
UNIV_INLINE
void
buf_block_buf_fix_inc_func(
/*=======================*/
# ifdef UNIV_DEBUG
const char* file, /*!< in: file name */
unsigned line, /*!< in: line */
# endif /* UNIV_DEBUG */
buf_block_t* block) /*!< in/out: block to bufferfix */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
2014-05-05 18:20:28 +02:00
# ifdef UNIV_DEBUG
/** Increments the bufferfix count.
@param[in,out] b block to bufferfix
@param[in] f file name where requested
@param[in] l line number where requested */
# define buf_block_buf_fix_inc(b,f,l) buf_block_buf_fix_inc_func(f,l,b)
# else /* UNIV_DEBUG */
/** Increments the bufferfix count.
@param[in,out] b block to bufferfix
@param[in] f file name where requested
@param[in] l line number where requested */
# define buf_block_buf_fix_inc(b,f,l) buf_block_buf_fix_inc_func(b)
# endif /* UNIV_DEBUG */
#endif /* !UNIV_INNOCHECKSUM */
/** Check if a buffer is all zeroes.
@param[in] buf data to check
@return whether the buffer is all zeroes */
bool buf_is_zeroes(st_::span<const byte> buf);
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 14:08:43 +02:00
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
/** Checks if the page is in crc32 checksum format.
2017-03-30 12:48:42 +02:00
@param[in] read_buf database page
@param[in] checksum_field1 new checksum field
@param[in] checksum_field2 old checksum field
@return true if the page is in crc32 checksum format. */
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
bool
buf_page_is_checksum_valid_crc32(
2017-03-30 12:48:42 +02:00
const byte* read_buf,
ulint checksum_field1,
MDEV-17958 Make bug-endian innodb_checksum_algorithm=crc32 optional In MySQL 5.7, it was noticed that files are not portable between big-endian and little-endian processor architectures (such as SPARC and x86), because the original implementation of innodb_checksum_algorithm=crc32 was not byte order agnostic. A byte order agnostic implementation of innodb_checksum_algorithm=crc32 was only added to MySQL 5.7, not backported to 5.6. Consequently, MariaDB Server versions 10.0 and 10.1 only contain the CRC-32C implementation that works incorrectly on big-endian architectures, and MariaDB Server 10.2.2 got the byte-order agnostic CRC-32C implementation from MySQL 5.7. MySQL 5.7 introduced a "legacy crc32" variant that is functionally equivalent to the big-endian version of the original crc32 implementation. Thanks to this variant, old data files can be transferred from big-endian systems to newer versions. Introducing new variants of checksum algorithms (without introducing new names for them, or something on the pages themselves to identify the algorithm) generally is a bad idea, because each checksum algorithm is like a lottery ticket. The more algorithms you try, the more likely it will be for the checksum to match on a corrupted page. So, essentially MySQL 5.7 weakened innodb_checksum_algorithm=crc32, and MariaDB 10.2.2 inherited this weakening. We introduce a build option that together with MDEV-17957 makes innodb_checksum_algorithm=strict_crc32 strict again by only allowing one variant of the checksum to match. WITH_INNODB_BUG_ENDIAN_CRC32: A new cmake option for enabling the bug-compatible "legacy crc32" checksum. This is only enabled on big-endian systems by default, to facilitate an upgrade from MariaDB 10.0 or 10.1. Checked by #ifdef INNODB_BUG_ENDIAN_CRC32. ut_crc32_byte_by_byte: Remove (unused function). legacy_big_endian_checksum: Remove. This variable seems to have unnecessarily complicated the logic. When the weakening is enabled, we must always fall back to the buggy checksum. buf_page_check_crc32(): A helper function to compute one or two CRC-32C variants.
2018-12-13 17:57:10 +02:00
ulint checksum_field2)
2017-03-30 12:48:42 +02:00
MY_ATTRIBUTE((nonnull(1), warn_unused_result));
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
/** Checks if the page is in innodb checksum format.
@param[in] read_buf database page
@param[in] checksum_field1 new checksum field
@param[in] checksum_field2 old checksum field
2017-03-30 12:48:42 +02:00
@return true if the page is in innodb checksum format. */
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
bool
buf_page_is_checksum_valid_innodb(
2017-03-30 12:48:42 +02:00
const byte* read_buf,
ulint checksum_field1,
ulint checksum_field2)
2017-03-30 12:48:42 +02:00
MY_ATTRIBUTE((nonnull(1), warn_unused_result));
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
/** Checks if the page is in none checksum format.
@param[in] read_buf database page
@param[in] checksum_field1 new checksum field
@param[in] checksum_field2 old checksum field
2017-03-30 12:48:42 +02:00
@return true if the page is in none checksum format. */
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
bool
buf_page_is_checksum_valid_none(
2017-03-30 12:48:42 +02:00
const byte* read_buf,
ulint checksum_field1,
ulint checksum_field2)
2017-03-30 12:48:42 +02:00
MY_ATTRIBUTE((nonnull(1), warn_unused_result));
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
MDEV-12602 InnoDB: Failing assertion: space->n_pending_ops == 0 This fixes a regression caused by MDEV-12428. When we introduced a variant of fil_space_acquire() that could increment space->n_pending_ops after space->stop_new_ops was set, the logic of fil_check_pending_operations() was broken. fil_space_t::n_pending_ios: A new field to track read or write access from the buffer pool routines immediately before a block write or after a block read in the file system. fil_space_acquire_for_io(), fil_space_release_for_io(): Similar to fil_space_acquire_silent() and fil_space_release(), but modify fil_space_t::n_pending_ios instead of fil_space_t::n_pending_ops. Adjust a number of places accordingly, and remove some redundant tablespace lookups. The following parts of this fix differ from the 10.2 version of this fix: buf_page_get_corrupt(): Add a tablespace parameter. In 10.2, we already had a two-phase process of freeing fil_space objects (first, fil_space_detach(), then release fil_system->mutex, and finally free the fil_space and fil_node objects). fil_space_free_and_mutex_exit(): Renamed from fil_space_free(). Detach the tablespace from the fil_system cache, release the fil_system->mutex, and then wait for space->n_pending_ios to reach 0, to avoid accessing freed data in a concurrent thread. During the wait, future calls to fil_space_acquire_for_io() will not find this tablespace, and the count can only be decremented to 0, at which point it is safe to free the objects. fil_node_free_part1(), fil_node_free_part2(): Refactored from fil_node_free().
2017-04-28 03:20:49 +03:00
/** Check if a page is corrupt.
@param[in] check_lsn whether the LSN should be checked
@param[in] read_buf database page
MDEV-12026: Implement innodb_checksum_algorithm=full_crc32 MariaDB data-at-rest encryption (innodb_encrypt_tables) had repurposed the same unused data field that was repurposed in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN) field of SPATIAL INDEX. Because of this, MariaDB was unable to support encryption on SPATIAL INDEX pages. Furthermore, InnoDB page checksums skipped some bytes, and there are multiple variations and checksum algorithms. By default, InnoDB accepts all variations of all algorithms that ever existed. This unnecessarily weakens the page checksums. We hereby introduce two more innodb_checksum_algorithm variants (full_crc32, strict_full_crc32) that are special in a way: When either setting is active, newly created data files will carry a flag (fil_space_t::full_crc32()) that indicates that all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what the parameter innodb_checksum_algorithm is assigned to. For old files, the old checksum algorithms will continue to be used. The value strict_full_crc32 will be equivalent to strict_crc32 and the value full_crc32 will be equivalent to crc32. ROW_FORMAT=COMPRESSED tables will only use the old format. These tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. They may be deprecated in the future. We do not want an unnecessary file format change for them. The new full_crc32() format also cleans up the MariaDB tablespace flags. We will reserve flags to store the page_compressed compression algorithm, and to store the compressed payload length, so that checksum can be computed over the compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums for pages. The single checksum is computed on the page contents that is written to the file. We do not make the new algorithm the default for two reasons. First, MariaDB 10.4.2 was a beta release, and the default values of parameters should not change after beta. Second, we did not yet implement the full_crc32 format for page_compressed pages. This will be fixed in MDEV-18644. This is joint work with Marko Mäkelä.
2019-02-19 21:00:00 +02:00
@param[in] fsp_flags tablespace flags
2017-03-30 12:48:42 +02:00
@return whether the page is corrupted */
bool
buf_page_is_corrupted(
bool check_lsn,
const byte* read_buf,
MDEV-12026: Implement innodb_checksum_algorithm=full_crc32 MariaDB data-at-rest encryption (innodb_encrypt_tables) had repurposed the same unused data field that was repurposed in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN) field of SPATIAL INDEX. Because of this, MariaDB was unable to support encryption on SPATIAL INDEX pages. Furthermore, InnoDB page checksums skipped some bytes, and there are multiple variations and checksum algorithms. By default, InnoDB accepts all variations of all algorithms that ever existed. This unnecessarily weakens the page checksums. We hereby introduce two more innodb_checksum_algorithm variants (full_crc32, strict_full_crc32) that are special in a way: When either setting is active, newly created data files will carry a flag (fil_space_t::full_crc32()) that indicates that all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what the parameter innodb_checksum_algorithm is assigned to. For old files, the old checksum algorithms will continue to be used. The value strict_full_crc32 will be equivalent to strict_crc32 and the value full_crc32 will be equivalent to crc32. ROW_FORMAT=COMPRESSED tables will only use the old format. These tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. They may be deprecated in the future. We do not want an unnecessary file format change for them. The new full_crc32() format also cleans up the MariaDB tablespace flags. We will reserve flags to store the page_compressed compression algorithm, and to store the compressed payload length, so that checksum can be computed over the compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums for pages. The single checksum is computed on the page contents that is written to the file. We do not make the new algorithm the default for two reasons. First, MariaDB 10.4.2 was a beta release, and the default values of parameters should not change after beta. Second, we did not yet implement the full_crc32 format for page_compressed pages. This will be fixed in MDEV-18644. This is joint work with Marko Mäkelä.
2019-02-19 21:00:00 +02:00
ulint fsp_flags)
MDEV-11759: Encryption code in MariaDB 10.1/10.2 causes compatibility problems Pages that are encrypted contain post encryption checksum on different location that normal checksum fields. Therefore, we should before decryption check this checksum to avoid unencrypting corrupted pages. After decryption we can use traditional checksum check to detect if page is corrupted or unencryption was done using incorrect key. Pages that are page compressed do not contain any checksum, here we need to fist unencrypt, decompress and finally use tradional checksum check to detect page corruption or that we used incorrect key in unencryption. buf0buf.cc: buf_page_is_corrupted() mofified so that compressed pages are skipped. buf0buf.h, buf_block_init(), buf_page_init_low(): removed unnecessary page_encrypted, page_compressed, stored_checksum, valculated_checksum fields from buf_page_t buf_page_get_gen(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_check_corrupt(): If page was not yet decrypted check if post encryption checksum still matches. If page is not anymore encrypted, use buf_page_is_corrupted() traditional checksum method. If page is detected as corrupted and it is not encrypted we print corruption message to error log. If page is still encrypted or it was encrypted and now corrupted, we will print message that page is encrypted to error log. buf_page_io_complete(): use new buf_page_check_corrupt() function to detect corrupted pages. buf_page_decrypt_after_read(): Verify post encryption checksum before tring to decrypt. fil0crypt.cc: fil_encrypt_buf() verify post encryption checksum and ind fil_space_decrypt() return true if we really decrypted the page. fil_space_verify_crypt_checksum(): rewrite to use the method used when calculating post encryption checksum. We also check if post encryption checksum matches that traditional checksum check does not match. fil0fil.ic: Add missed page type encrypted and page compressed to fil_get_page_type_name() Note that this change does not yet fix innochecksum tool, that will be done in separate MDEV. Fix test failures caused by buf page corruption injection.
2017-02-06 10:47:55 +02:00
MY_ATTRIBUTE((warn_unused_result));
2019-12-23 07:14:51 +02:00
inline void *aligned_malloc(size_t size, size_t align)
{
#ifdef _MSC_VER
return _aligned_malloc(size, align);
#else
void *result;
if (posix_memalign(&result, align, size))
result= NULL;
return result;
#endif
}
2019-12-23 07:14:51 +02:00
inline void aligned_free(void *ptr)
{
#ifdef _MSC_VER
_aligned_free(ptr);
#else
free(ptr);
#endif
}
MDEV-12026: Implement innodb_checksum_algorithm=full_crc32 MariaDB data-at-rest encryption (innodb_encrypt_tables) had repurposed the same unused data field that was repurposed in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN) field of SPATIAL INDEX. Because of this, MariaDB was unable to support encryption on SPATIAL INDEX pages. Furthermore, InnoDB page checksums skipped some bytes, and there are multiple variations and checksum algorithms. By default, InnoDB accepts all variations of all algorithms that ever existed. This unnecessarily weakens the page checksums. We hereby introduce two more innodb_checksum_algorithm variants (full_crc32, strict_full_crc32) that are special in a way: When either setting is active, newly created data files will carry a flag (fil_space_t::full_crc32()) that indicates that all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what the parameter innodb_checksum_algorithm is assigned to. For old files, the old checksum algorithms will continue to be used. The value strict_full_crc32 will be equivalent to strict_crc32 and the value full_crc32 will be equivalent to crc32. ROW_FORMAT=COMPRESSED tables will only use the old format. These tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. They may be deprecated in the future. We do not want an unnecessary file format change for them. The new full_crc32() format also cleans up the MariaDB tablespace flags. We will reserve flags to store the page_compressed compression algorithm, and to store the compressed payload length, so that checksum can be computed over the compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums for pages. The single checksum is computed on the page contents that is written to the file. We do not make the new algorithm the default for two reasons. First, MariaDB 10.4.2 was a beta release, and the default values of parameters should not change after beta. Second, we did not yet implement the full_crc32 format for page_compressed pages. This will be fixed in MDEV-18644. This is joint work with Marko Mäkelä.
2019-02-19 21:00:00 +02:00
/** Read the key version from the page. In full crc32 format,
key version is stored at {0-3th} bytes. In other format, it is
stored in 26th position.
@param[in] read_buf database page
@param[in] fsp_flags tablespace flags
@return key version of the page. */
inline uint32_t buf_page_get_key_version(const byte* read_buf, ulint fsp_flags)
{
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 14:08:43 +02:00
return fil_space_t::full_crc32(fsp_flags)
MDEV-12026: Implement innodb_checksum_algorithm=full_crc32 MariaDB data-at-rest encryption (innodb_encrypt_tables) had repurposed the same unused data field that was repurposed in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN) field of SPATIAL INDEX. Because of this, MariaDB was unable to support encryption on SPATIAL INDEX pages. Furthermore, InnoDB page checksums skipped some bytes, and there are multiple variations and checksum algorithms. By default, InnoDB accepts all variations of all algorithms that ever existed. This unnecessarily weakens the page checksums. We hereby introduce two more innodb_checksum_algorithm variants (full_crc32, strict_full_crc32) that are special in a way: When either setting is active, newly created data files will carry a flag (fil_space_t::full_crc32()) that indicates that all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what the parameter innodb_checksum_algorithm is assigned to. For old files, the old checksum algorithms will continue to be used. The value strict_full_crc32 will be equivalent to strict_crc32 and the value full_crc32 will be equivalent to crc32. ROW_FORMAT=COMPRESSED tables will only use the old format. These tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. They may be deprecated in the future. We do not want an unnecessary file format change for them. The new full_crc32() format also cleans up the MariaDB tablespace flags. We will reserve flags to store the page_compressed compression algorithm, and to store the compressed payload length, so that checksum can be computed over the compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums for pages. The single checksum is computed on the page contents that is written to the file. We do not make the new algorithm the default for two reasons. First, MariaDB 10.4.2 was a beta release, and the default values of parameters should not change after beta. Second, we did not yet implement the full_crc32 format for page_compressed pages. This will be fixed in MDEV-18644. This is joint work with Marko Mäkelä.
2019-02-19 21:00:00 +02:00
? mach_read_from_4(read_buf + FIL_PAGE_FCRC32_KEY_VERSION)
: mach_read_from_4(read_buf
+ FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION);
}
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 14:08:43 +02:00
/** Read the compression info from the page. In full crc32 format,
compression info is at MSB of page type. In other format, it is
stored in page type.
@param[in] read_buf database page
@param[in] fsp_flags tablespace flags
@return true if page is compressed. */
inline bool buf_page_is_compressed(const byte* read_buf, ulint fsp_flags)
{
ulint page_type = mach_read_from_2(read_buf + FIL_PAGE_TYPE);
return fil_space_t::full_crc32(fsp_flags)
? !!(page_type & 1U << FIL_PAGE_COMPRESS_FCRC32_MARKER)
: page_type == FIL_PAGE_PAGE_COMPRESSED;
}
/** Get the compressed or uncompressed size of a full_crc32 page.
@param[in] buf page_compressed or uncompressed page
@param[out] comp whether the page could be compressed
@param[out] cr whether the page could be corrupted
@return the payload size in the file page */
inline uint buf_page_full_crc32_size(const byte* buf, bool* comp, bool* cr)
{
uint t = mach_read_from_2(buf + FIL_PAGE_TYPE);
uint page_size = uint(srv_page_size);
if (!(t & 1U << FIL_PAGE_COMPRESS_FCRC32_MARKER)) {
return page_size;
}
t &= ~(1U << FIL_PAGE_COMPRESS_FCRC32_MARKER);
t <<= 8;
if (t < page_size) {
page_size = t;
if (comp) {
*comp = true;
}
} else if (cr) {
*cr = true;
}
return page_size;
}
#ifndef UNIV_INNOCHECKSUM
/**********************************************************************//**
Gets the hash value of a block. This can be used in searches in the
lock hash table.
@return lock hash value */
UNIV_INLINE
unsigned
buf_block_get_lock_hash_val(
/*========================*/
const buf_block_t* block) /*!< in: block */
MY_ATTRIBUTE((warn_unused_result));
#ifdef UNIV_DEBUG
/** Find a block in the buffer pool that points to a given compressed page.
@param[in] data pointer to compressed page
@return buffer block pointing to the compressed page
@retval NULL if not found */
buf_block_t* buf_pool_contains_zip(const void* data);
#endif /* UNIV_DEBUG */
/***********************************************************************
FIXME_FTS: Gets the frame the pointer is pointing to. */
UNIV_INLINE
buf_frame_t*
buf_frame_align(
/*============*/
/* out: pointer to frame */
byte* ptr); /* in: pointer to a frame */
/** Dump a page to stderr.
@param[in] read_buf database page
@param[in] zip_size compressed page size, or 0 */
void buf_page_print(const byte* read_buf, ulint zip_size = 0)
2017-09-06 19:28:51 +03:00
ATTRIBUTE_COLD __attribute__((nonnull));
/********************************************************************//**
Decompress a block.
@return TRUE if successful */
ibool
buf_zip_decompress(
/*===============*/
buf_block_t* block, /*!< in/out: block */
ibool check); /*!< in: TRUE=verify the page checksum */
#ifdef UNIV_DEBUG
/** @return the number of latched pages in the buffer pool */
ulint buf_get_latched_pages_number();
#endif /* UNIV_DEBUG */
/*********************************************************************//**
Prints info of the buffer i/o. */
void
buf_print_io(
/*=========*/
FILE* file); /*!< in: file where to print */
/** Collect buffer pool metadata.
@param[out] pool_info buffer pool metadata */
void buf_stats_get_pool_info(buf_pool_info_t *pool_info);
/** Refresh the statistics used to print per-second averages. */
void buf_refresh_io_stats();
/** Check that there currently are no I/O operations pending.
@return number of pending i/o */
ulint buf_pool_check_no_pending_io();
/** Invalidate all pages in the buffer pool.
All pages must be in a replaceable state (not modified or latched). */
void buf_pool_invalidate();
/*========================================================================
--------------------------- LOWER LEVEL ROUTINES -------------------------
=========================================================================*/
#ifdef UNIV_DEBUG
/*********************************************************************//**
Adds latch level info for the rw-lock protecting the buffer frame. This
should be called in the debug version after a successful latching of a
page if we know the latching order level of the acquired latch. */
UNIV_INLINE
void
buf_block_dbg_add_level(
/*====================*/
buf_block_t* block, /*!< in: buffer page
where we have acquired latch */
latch_level_t level); /*!< in: latching order level */
#else /* UNIV_DEBUG */
# define buf_block_dbg_add_level(block, level) /* nothing */
#endif /* UNIV_DEBUG */
/*********************************************************************//**
Gets the state of a block.
@return state */
UNIV_INLINE
enum buf_page_state
buf_page_get_state(
/*===============*/
const buf_page_t* bpage); /*!< in: pointer to the control
block */
/*********************************************************************//**
Gets the state of a block.
@return state */
UNIV_INLINE
enum buf_page_state
buf_block_get_state(
/*================*/
const buf_block_t* block) /*!< in: pointer to the control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Sets the state of a block. */
UNIV_INLINE
void
buf_page_set_state(
/*===============*/
buf_page_t* bpage, /*!< in/out: pointer to control block */
enum buf_page_state state); /*!< in: state */
/*********************************************************************//**
Sets the state of a block. */
UNIV_INLINE
void
buf_block_set_state(
/*================*/
buf_block_t* block, /*!< in/out: pointer to control block */
enum buf_page_state state); /*!< in: state */
/*********************************************************************//**
Determines if a block is mapped to a tablespace.
@return TRUE if mapped */
UNIV_INLINE
ibool
buf_page_in_file(
/*=============*/
const buf_page_t* bpage) /*!< in: pointer to control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Determines if a block should be on unzip_LRU list.
@return TRUE if block belongs to unzip_LRU */
UNIV_INLINE
ibool
buf_page_belongs_to_unzip_LRU(
/*==========================*/
const buf_page_t* bpage) /*!< in: pointer to control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Gets the mutex of a block.
@return pointer to mutex protecting bpage */
UNIV_INLINE
BPageMutex*
buf_page_get_mutex(
/*===============*/
const buf_page_t* bpage) /*!< in: pointer to control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Get the flush type of a page.
@return flush type */
UNIV_INLINE
buf_flush_t
buf_page_get_flush_type(
/*====================*/
const buf_page_t* bpage) /*!< in: buffer page */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Set the flush type of a page. */
UNIV_INLINE
void
buf_page_set_flush_type(
/*====================*/
buf_page_t* bpage, /*!< in: buffer page */
buf_flush_t flush_type); /*!< in: flush type */
/** Map a block to a file page.
@param[in,out] block pointer to control block
@param[in] page_id page id */
UNIV_INLINE
void
buf_block_set_file_page(
buf_block_t* block,
const page_id_t page_id);
/*********************************************************************//**
Gets the io_fix state of a block.
@return io_fix state */
UNIV_INLINE
enum buf_io_fix
buf_page_get_io_fix(
/*================*/
const buf_page_t* bpage) /*!< in: pointer to the control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Gets the io_fix state of a block.
@return io_fix state */
UNIV_INLINE
enum buf_io_fix
buf_block_get_io_fix(
/*================*/
const buf_block_t* block) /*!< in: pointer to the control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Sets the io_fix state of a block. */
UNIV_INLINE
void
buf_page_set_io_fix(
/*================*/
buf_page_t* bpage, /*!< in/out: control block */
enum buf_io_fix io_fix);/*!< in: io_fix state */
/*********************************************************************//**
Sets the io_fix state of a block. */
UNIV_INLINE
void
buf_block_set_io_fix(
/*=================*/
buf_block_t* block, /*!< in/out: control block */
enum buf_io_fix io_fix);/*!< in: io_fix state */
/*********************************************************************//**
Makes a block sticky. A sticky block implies that even after we release
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
the buf_pool.mutex and the block->mutex:
* it cannot be removed from the flush_list
* the block descriptor cannot be relocated
* it cannot be removed from the LRU list
Note that:
* the block can still change its position in the LRU list
* the next and previous pointers can change. */
UNIV_INLINE
void
buf_page_set_sticky(
/*================*/
buf_page_t* bpage); /*!< in/out: control block */
/*********************************************************************//**
Removes stickiness of a block. */
UNIV_INLINE
void
buf_page_unset_sticky(
/*==================*/
buf_page_t* bpage); /*!< in/out: control block */
/********************************************************************//**
Determine if a buffer block can be relocated in memory. The block
can be dirty, but it must not be I/O-fixed or bufferfixed. */
UNIV_INLINE
ibool
buf_page_can_relocate(
/*==================*/
const buf_page_t* bpage) /*!< control block being relocated */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Determine if a block has been flagged old.
@return TRUE if old */
UNIV_INLINE
ibool
buf_page_is_old(
/*============*/
const buf_page_t* bpage) /*!< in: control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Flag a block old. */
UNIV_INLINE
void
buf_page_set_old(
/*=============*/
buf_page_t* bpage, /*!< in/out: control block */
bool old); /*!< in: old */
/*********************************************************************//**
Determine the time of first access of a block in the buffer pool.
@return ut_time_ms() at the time of first access, 0 if not accessed */
UNIV_INLINE
unsigned
buf_page_is_accessed(
/*=================*/
const buf_page_t* bpage) /*!< in: control block */
MY_ATTRIBUTE((warn_unused_result));
/*********************************************************************//**
Flag a block accessed. */
UNIV_INLINE
void
buf_page_set_accessed(
/*==================*/
buf_page_t* bpage) /*!< in/out: control block */
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Gets the buf_block_t handle of a buffered file block if an uncompressed
page frame exists, or NULL. Note: even though bpage is not declared a
const we don't update its value.
@return control block, or NULL */
UNIV_INLINE
buf_block_t*
buf_page_get_block(
/*===============*/
buf_page_t* bpage) /*!< in: control block, or NULL */
MY_ATTRIBUTE((warn_unused_result));
#ifdef UNIV_DEBUG
/*********************************************************************//**
Gets a pointer to the memory frame of a block.
@return pointer to the frame */
UNIV_INLINE
buf_frame_t*
buf_block_get_frame(
/*================*/
const buf_block_t* block) /*!< in: pointer to the control block */
MY_ATTRIBUTE((warn_unused_result));
#else /* UNIV_DEBUG */
# define buf_block_get_frame(block) (block)->frame
#endif /* UNIV_DEBUG */
/*********************************************************************//**
Gets the compressed page descriptor corresponding to an uncompressed page
if applicable. */
#define buf_block_get_page_zip(block) \
(UNIV_LIKELY_NULL((block)->page.zip.data) ? &(block)->page.zip : NULL)
#define is_buf_block_get_page_zip(block) \
UNIV_LIKELY_NULL((block)->page.zip.data)
/** Initialize a page for read to the buffer buf_pool. If the page is
(1) already in buf_pool, or
(2) if we specify to read only ibuf pages and the page is not an ibuf page, or
(3) if the space is deleted or being deleted,
then this function does nothing.
Sets the io_fix flag to BUF_IO_READ and sets a non-recursive exclusive lock
on the buffer frame. The io-handler must take care that the flag is cleared
and the lock released later.
@param[out] err DB_SUCCESS or DB_TABLESPACE_DELETED
@param[in] mode BUF_READ_IBUF_PAGES_ONLY, ...
@param[in] page_id page id
@param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0
@param[in] unzip whether the uncompressed page is
requested (for ROW_FORMAT=COMPRESSED)
@return pointer to the block
@retval NULL in case of an error */
buf_page_t*
buf_page_init_for_read(
dberr_t* err,
ulint mode,
const page_id_t page_id,
ulint zip_size,
bool unzip);
Merge 10.1 into 10.2 This only merges MDEV-12253, adapting it to MDEV-12602 which is already present in 10.2 but not yet in the 10.1 revision that is being merged. TODO: Error handling in crash recovery needs to be improved. If a page cannot be decrypted (or read), we should cleanly abort the startup. If innodb_force_recovery is specified, we should ignore the problematic page and apply redo log to other pages. Currently, the test encryption.innodb-redo-badkey randomly fails like this (the last messages are from cmake -DWITH_ASAN): 2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption 2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown... i================================================================= ==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0 #0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750) #1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4 #2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17 #3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3 #4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2 #5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2 #6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
2017-05-05 10:25:29 +03:00
/** Complete a read or write request of a file page to or from the buffer pool.
@param[in,out] bpage page to complete
@param[in] dblwr whether the doublewrite buffer was used (on write)
@param[in] evict whether or not to evict the page from LRU list
Merge 10.1 into 10.2 This only merges MDEV-12253, adapting it to MDEV-12602 which is already present in 10.2 but not yet in the 10.1 revision that is being merged. TODO: Error handling in crash recovery needs to be improved. If a page cannot be decrypted (or read), we should cleanly abort the startup. If innodb_force_recovery is specified, we should ignore the problematic page and apply redo log to other pages. Currently, the test encryption.innodb-redo-badkey randomly fails like this (the last messages are from cmake -DWITH_ASAN): 2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption 2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown... i================================================================= ==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0 #0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750) #1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4 #2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17 #3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3 #4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2 #5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2 #6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
2017-05-05 10:25:29 +03:00
@return whether the operation succeeded
@retval DB_SUCCESS always when writing, or if a read page was OK
@retval DB_PAGE_CORRUPTED if the checksum fails on a page read
@retval DB_DECRYPTION_FAILED if page post encryption checksum matches but
after decryption normal page checksum does
not match */
UNIV_INTERN
MDEV-12253: Buffer pool blocks are accessed after they have been freed Problem was that bpage was referenced after it was already freed from LRU. Fixed by adding a new variable encrypted that is passed down to buf_page_check_corrupt() and used in buf_page_get_gen() to stop processing page read. This patch should also address following test failures and bugs: MDEV-12419: IMPORT should not look up tablespace in PageConverter::validate(). This is now removed. MDEV-10099: encryption.innodb_onlinealter_encryption fails sporadically in buildbot MDEV-11420: encryption.innodb_encryption-page-compression failed in buildbot MDEV-11222: encryption.encrypt_and_grep failed in buildbot on P8 Removed dict_table_t::is_encrypted and dict_table_t::ibd_file_missing and replaced these with dict_table_t::file_unreadable. Table ibd file is missing if fil_get_space(space_id) returns NULL and encrypted if not. Removed dict_table_t::is_corrupted field. Ported FilSpace class from 10.2 and using that on buf_page_check_corrupt(), buf_page_decrypt_after_read(), buf_page_encrypt_before_write(), buf_dblwr_process(), buf_read_page(), dict_stats_save_defrag_stats(). Added test cases when enrypted page could be read while doing redo log crash recovery. Also added test case for row compressed blobs. btr_cur_open_at_index_side_func(), btr_cur_open_at_rnd_pos_func(): Avoid referencing block that is NULL. buf_page_get_zip(): Issue error if page read fails. buf_page_get_gen(): Use dberr_t for error detection and do not reference bpage after we hare freed it. buf_mark_space_corrupt(): remove bpage from LRU also when it is encrypted. buf_page_check_corrupt(): @return DB_SUCCESS if page has been read and is not corrupted, DB_PAGE_CORRUPTED if page based on checksum check is corrupted, DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. In read case only DB_SUCCESS is possible. buf_page_io_complete(): use dberr_t for error handling. buf_flush_write_block_low(), buf_read_ahead_random(), buf_read_page_async(), buf_read_ahead_linear(), buf_read_ibuf_merge_pages(), buf_read_recv_pages(), fil_aio_wait(): Issue error if page read fails. btr_pcur_move_to_next_page(): Do not reference page if it is NULL. Introduced dict_table_t::is_readable() and dict_index_t::is_readable() that will return true if tablespace exists and pages read from tablespace are not corrupted or page decryption failed. Removed buf_page_t::key_version. After page decryption the key version is not removed from page frame. For unencrypted pages, old key_version is removed at buf_page_encrypt_before_write() dict_stats_update_transient_for_index(), dict_stats_update_transient() Do not continue if table decryption failed or table is corrupted. dict0stats.cc: Introduced a dict_stats_report_error function to avoid code duplication. fil_parse_write_crypt_data(): Check that key read from redo log entry is found from encryption plugin and if it is not, refuse to start. PageConverter::validate(): Removed access to fil_space_t as tablespace is not available during import. Fixed error code on innodb.innodb test. Merged test cased innodb-bad-key-change5 and innodb-bad-key-shutdown to innodb-bad-key-change2. Removed innodb-bad-key-change5 test. Decreased unnecessary complexity on some long lasting tests. Removed fil_inc_pending_ops(), fil_decr_pending_ops(), fil_get_first_space(), fil_get_next_space(), fil_get_first_space_safe(), fil_get_next_space_safe() functions. fil_space_verify_crypt_checksum(): Fixed bug found using ASAN where FIL_PAGE_END_LSN_OLD_CHECKSUM field was incorrectly accessed from row compressed tables. Fixed out of page frame bug for row compressed tables in fil_space_verify_crypt_checksum() found using ASAN. Incorrect function was called for compressed table. Added new tests for discard, rename table and drop (we should allow them even when page decryption fails). Alter table rename is not allowed. Added test for restart with innodb-force-recovery=1 when page read on redo-recovery cant be decrypted. Added test for corrupted table where both page data and FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is corrupted. Adjusted the test case innodb_bug14147491 so that it does not anymore expect crash. Instead table is just mostly not usable. fil0fil.h: fil_space_acquire_low is not visible function and fil_space_acquire and fil_space_acquire_silent are inline functions. FilSpace class uses fil_space_acquire_low directly. recv_apply_hashed_log_recs() does not return anything.
2017-04-26 15:19:16 +03:00
dberr_t
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
buf_page_io_complete(
buf_page_t* bpage,
bool dblwr = false,
bool evict = false)
Merge 10.1 into 10.2 This only merges MDEV-12253, adapting it to MDEV-12602 which is already present in 10.2 but not yet in the 10.1 revision that is being merged. TODO: Error handling in crash recovery needs to be improved. If a page cannot be decrypted (or read), we should cleanly abort the startup. If innodb_force_recovery is specified, we should ignore the problematic page and apply redo log to other pages. Currently, the test encryption.innodb-redo-badkey randomly fails like this (the last messages are from cmake -DWITH_ASAN): 2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption 2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown... i================================================================= ==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0 #0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750) #1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4 #2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17 #3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3 #4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2 #5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2 #6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
2017-05-05 10:25:29 +03:00
MY_ATTRIBUTE((nonnull));
MDEV-12253: Buffer pool blocks are accessed after they have been freed Problem was that bpage was referenced after it was already freed from LRU. Fixed by adding a new variable encrypted that is passed down to buf_page_check_corrupt() and used in buf_page_get_gen() to stop processing page read. This patch should also address following test failures and bugs: MDEV-12419: IMPORT should not look up tablespace in PageConverter::validate(). This is now removed. MDEV-10099: encryption.innodb_onlinealter_encryption fails sporadically in buildbot MDEV-11420: encryption.innodb_encryption-page-compression failed in buildbot MDEV-11222: encryption.encrypt_and_grep failed in buildbot on P8 Removed dict_table_t::is_encrypted and dict_table_t::ibd_file_missing and replaced these with dict_table_t::file_unreadable. Table ibd file is missing if fil_get_space(space_id) returns NULL and encrypted if not. Removed dict_table_t::is_corrupted field. Ported FilSpace class from 10.2 and using that on buf_page_check_corrupt(), buf_page_decrypt_after_read(), buf_page_encrypt_before_write(), buf_dblwr_process(), buf_read_page(), dict_stats_save_defrag_stats(). Added test cases when enrypted page could be read while doing redo log crash recovery. Also added test case for row compressed blobs. btr_cur_open_at_index_side_func(), btr_cur_open_at_rnd_pos_func(): Avoid referencing block that is NULL. buf_page_get_zip(): Issue error if page read fails. buf_page_get_gen(): Use dberr_t for error detection and do not reference bpage after we hare freed it. buf_mark_space_corrupt(): remove bpage from LRU also when it is encrypted. buf_page_check_corrupt(): @return DB_SUCCESS if page has been read and is not corrupted, DB_PAGE_CORRUPTED if page based on checksum check is corrupted, DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. In read case only DB_SUCCESS is possible. buf_page_io_complete(): use dberr_t for error handling. buf_flush_write_block_low(), buf_read_ahead_random(), buf_read_page_async(), buf_read_ahead_linear(), buf_read_ibuf_merge_pages(), buf_read_recv_pages(), fil_aio_wait(): Issue error if page read fails. btr_pcur_move_to_next_page(): Do not reference page if it is NULL. Introduced dict_table_t::is_readable() and dict_index_t::is_readable() that will return true if tablespace exists and pages read from tablespace are not corrupted or page decryption failed. Removed buf_page_t::key_version. After page decryption the key version is not removed from page frame. For unencrypted pages, old key_version is removed at buf_page_encrypt_before_write() dict_stats_update_transient_for_index(), dict_stats_update_transient() Do not continue if table decryption failed or table is corrupted. dict0stats.cc: Introduced a dict_stats_report_error function to avoid code duplication. fil_parse_write_crypt_data(): Check that key read from redo log entry is found from encryption plugin and if it is not, refuse to start. PageConverter::validate(): Removed access to fil_space_t as tablespace is not available during import. Fixed error code on innodb.innodb test. Merged test cased innodb-bad-key-change5 and innodb-bad-key-shutdown to innodb-bad-key-change2. Removed innodb-bad-key-change5 test. Decreased unnecessary complexity on some long lasting tests. Removed fil_inc_pending_ops(), fil_decr_pending_ops(), fil_get_first_space(), fil_get_next_space(), fil_get_first_space_safe(), fil_get_next_space_safe() functions. fil_space_verify_crypt_checksum(): Fixed bug found using ASAN where FIL_PAGE_END_LSN_OLD_CHECKSUM field was incorrectly accessed from row compressed tables. Fixed out of page frame bug for row compressed tables in fil_space_verify_crypt_checksum() found using ASAN. Incorrect function was called for compressed table. Added new tests for discard, rename table and drop (we should allow them even when page decryption fails). Alter table rename is not allowed. Added test for restart with innodb-force-recovery=1 when page read on redo-recovery cant be decrypted. Added test for corrupted table where both page data and FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is corrupted. Adjusted the test case innodb_bug14147491 so that it does not anymore expect crash. Instead table is just mostly not usable. fil0fil.h: fil_space_acquire_low is not visible function and fil_space_acquire and fil_space_acquire_silent are inline functions. FilSpace class uses fil_space_acquire_low directly. recv_apply_hashed_log_recs() does not return anything.
2017-04-26 15:19:16 +03:00
/** Returns the control block of a file page, NULL if not found.
@param[in] page_id page id
@return block, NULL if not found */
inline buf_page_t *buf_page_hash_get_low(const page_id_t page_id);
/** Returns the control block of a file page, NULL if not found.
If the block is found and lock is not NULL then the appropriate
page_hash lock is acquired in the specified lock mode. Otherwise,
mode value is ignored. It is up to the caller to release the
lock. If the block is found and the lock is NULL then the page_hash
lock is released by this function.
@param[in] page_id page id
@param[in,out] lock lock of the page hash acquired if bpage is
found, NULL otherwise. If NULL is passed then the hash_lock is released by
this function.
@param[in] lock_mode RW_LOCK_X or RW_LOCK_S. Ignored if
lock == NULL
@param[in] watch if true, return watch sentinel also.
@return pointer to the bpage or NULL; if NULL, lock is also NULL or
a watch sentinel. */
UNIV_INLINE
buf_page_t*
buf_page_hash_get_locked(
const page_id_t page_id,
rw_lock_t** lock,
ulint lock_mode,
bool watch = false);
/** Returns the control block of a file page, NULL if not found.
If the block is found and lock is not NULL then the appropriate
page_hash lock is acquired in the specified lock mode. Otherwise,
mode value is ignored. It is up to the caller to release the
lock. If the block is found and the lock is NULL then the page_hash
lock is released by this function.
@param[in] page_id page id
@param[in,out] lock lock of the page hash acquired if bpage is
found, NULL otherwise. If NULL is passed then the hash_lock is released by
this function.
@param[in] lock_mode RW_LOCK_X or RW_LOCK_S. Ignored if
lock == NULL
@return pointer to the block or NULL; if NULL, lock is also NULL. */
UNIV_INLINE
buf_block_t*
buf_block_hash_get_locked(
const page_id_t page_id,
rw_lock_t** lock,
ulint lock_mode);
/* There are four different ways we can try to get a bpage or block
from the page hash:
1) Caller already holds the appropriate page hash lock: in the case call
buf_page_hash_get_low() function.
2) Caller wants to hold page hash lock in x-mode
3) Caller wants to hold page hash lock in s-mode
4) Caller doesn't want to hold page hash lock */
#define buf_page_hash_get_s_locked(page_id, l) \
buf_page_hash_get_locked(page_id, l, RW_LOCK_S)
#define buf_page_hash_get_x_locked(page_id, l) \
buf_page_hash_get_locked(page_id, l, RW_LOCK_X)
#define buf_page_hash_get(page_id) \
buf_page_hash_get_locked(page_id, NULL, 0)
#define buf_page_get_also_watch(page_id) \
buf_page_hash_get_locked(page_id, NULL, 0, true)
#define buf_block_hash_get_s_locked(page_id, l) \
buf_block_hash_get_locked(page_id, l, RW_LOCK_S)
#define buf_block_hash_get_x_locked(page_id, l) \
buf_block_hash_get_locked(page_id, l, RW_LOCK_X)
#define buf_block_hash_get(page_id) \
buf_block_hash_get_locked(page_id, NULL, 0)
/** Determine if a block is a sentinel for a buffer pool watch.
@param[in] bpage block
@return whether bpage a sentinel for a buffer pool watch */
bool buf_pool_watch_is_sentinel(const buf_page_t* bpage)
2016-06-21 14:21:03 +02:00
MY_ATTRIBUTE((nonnull, warn_unused_result));
/** Stop watching if the page has been read in.
buf_pool_watch_set(space,offset) must have returned NULL before.
@param[in] page_id page id */
void buf_pool_watch_unset(const page_id_t page_id);
/** Check if the page has been read in.
This may only be called after buf_pool_watch_set(space,offset)
has returned NULL and before invoking buf_pool_watch_unset(space,offset).
@param[in] page_id page id
@return FALSE if the given page was not read in, TRUE if it was */
bool buf_pool_watch_occurred(const page_id_t page_id)
MY_ATTRIBUTE((warn_unused_result));
/** Calculate aligned buffer pool size based on srv_buf_pool_chunk_unit,
if needed.
@param[in] size size in bytes
@return aligned size */
UNIV_INLINE
ulint
buf_pool_size_align(
ulint size);
MDEV-12026: Implement innodb_checksum_algorithm=full_crc32 MariaDB data-at-rest encryption (innodb_encrypt_tables) had repurposed the same unused data field that was repurposed in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN) field of SPATIAL INDEX. Because of this, MariaDB was unable to support encryption on SPATIAL INDEX pages. Furthermore, InnoDB page checksums skipped some bytes, and there are multiple variations and checksum algorithms. By default, InnoDB accepts all variations of all algorithms that ever existed. This unnecessarily weakens the page checksums. We hereby introduce two more innodb_checksum_algorithm variants (full_crc32, strict_full_crc32) that are special in a way: When either setting is active, newly created data files will carry a flag (fil_space_t::full_crc32()) that indicates that all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what the parameter innodb_checksum_algorithm is assigned to. For old files, the old checksum algorithms will continue to be used. The value strict_full_crc32 will be equivalent to strict_crc32 and the value full_crc32 will be equivalent to crc32. ROW_FORMAT=COMPRESSED tables will only use the old format. These tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. They may be deprecated in the future. We do not want an unnecessary file format change for them. The new full_crc32() format also cleans up the MariaDB tablespace flags. We will reserve flags to store the page_compressed compression algorithm, and to store the compressed payload length, so that checksum can be computed over the compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums for pages. The single checksum is computed on the page contents that is written to the file. We do not make the new algorithm the default for two reasons. First, MariaDB 10.4.2 was a beta release, and the default values of parameters should not change after beta. Second, we did not yet implement the full_crc32 format for page_compressed pages. This will be fixed in MDEV-18644. This is joint work with Marko Mäkelä.
2019-02-19 21:00:00 +02:00
/** Verify that post encryption checksum match with the calculated checksum.
This function should be called only if tablespace contains crypt data metadata.
@param[in] page page frame
@param[in] fsp_flags tablespace flags
@return true if page is encrypted and OK, false otherwise */
bool buf_page_verify_crypt_checksum(
const byte* page,
ulint fsp_flags);
/** Calculate a ROW_FORMAT=COMPRESSED page checksum and update the page.
@param[in,out] page page to update
@param[in] size compressed page size */
void buf_flush_update_zip_checksum(buf_frame_t* page, ulint size);
2014-12-22 16:53:17 +02:00
/** @brief The temporary memory structure.
2014-12-22 16:53:17 +02:00
NOTE! The definition appears here only for other modules of this
directory (buf) to see it. Do not use from outside! */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
class buf_tmp_buffer_t
{
/** whether this slot is reserved */
std::atomic<bool> reserved;
MDEV-13103 Deal with page_compressed page corruption fil_page_decompress(): Replaces fil_decompress_page(). Allow the caller detect errors. Remove duplicated code. Use the "safe" instead of "fast" variants of decompression routines. fil_page_compress(): Replaces fil_compress_page(). The length of the input buffer always was srv_page_size (innodb_page_size). Remove printouts, and remove the fil_space_t* parameter. buf_tmp_buffer_t::reserved: Make private; the accessors acquire() and release() will use atomic memory access. buf_pool_reserve_tmp_slot(): Make static. Remove the second parameter. Do not acquire any mutex. Remove the allocation of the buffers. buf_tmp_reserve_crypt_buf(), buf_tmp_reserve_compression_buf(): Refactored away from buf_pool_reserve_tmp_slot(). buf_page_decrypt_after_read(): Make static, and simplify the logic. Use the encryption buffer also for decompressing. buf_page_io_complete(), buf_dblwr_process(): Check more failures. fil_space_encrypt(): Simplify the debug checks. fil_space_t::printed_compression_failure: Remove. fil_get_compression_alg_name(): Remove. fil_iterate(): Allocate a buffer for compression and decompression only once, instead of allocating and freeing it for every page that uses compression, during IMPORT TABLESPACE. Also, validate the page checksum before decryption, and reduce the scope of some variables. fil_page_is_index_page(), fil_page_is_lzo_compressed(): Remove (unused). AbstractCallback::operator()(): Remove the parameter 'offset'. The check for it in FetchIndexRootPages::operator() was basically redundant and dead code since the previous refactoring.
2018-06-13 16:15:21 +03:00
public:
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** For encryption, the data needs to be copied to a separate buffer
before it's encrypted&written. The buffer block itself can be replaced
while a write of crypt_buf to file is in progress. */
byte *crypt_buf;
/** buffer for fil_page_compress(), for flushing page_compressed pages */
byte *comp_buf;
/** pointer to resulting buffer after encryption or compression;
not separately allocated memory */
byte *out_buf;
/** Release the slot */
void release() { reserved.store(false, std::memory_order_relaxed); }
/** Acquire the slot
@return whether the slot was acquired */
bool acquire() { return !reserved.exchange(true, std::memory_order_relaxed);}
/** Allocate a buffer for encryption, decryption or decompression. */
void allocate()
{
if (!crypt_buf)
crypt_buf= static_cast<byte*>
(aligned_malloc(srv_page_size, srv_page_size));
}
};
2014-12-22 16:53:17 +02:00
/** The common buffer control block structure
for compressed and uncompressed frames */
/** Number of bits used for buffer page states. */
#define BUF_PAGE_STATE_BITS 3
class buf_page_t {
public:
/** @name General fields
None of these bit-fields must be modified without holding
buf_page_get_mutex() [buf_block_t::mutex or
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.zip_mutex], since they can be stored in the same
machine word. Some of these fields are additionally protected
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
by buf_pool.mutex. */
/* @{ */
/** Page id. Protected by buf_pool mutex. */
page_id_t id;
buf_page_t* hash; /*!< node used in chaining to
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.page_hash or
buf_pool.zip_hash */
2014-05-05 18:20:28 +02:00
/** Count of how manyfold this block is currently bufferfixed. */
Atomic_counter<uint32_t> buf_fix_count;
2014-05-05 18:20:28 +02:00
/** type of pending I/O operation; also protected by
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.mutex for writes only */
buf_io_fix io_fix;
2014-05-05 18:20:28 +02:00
/** Block state. @see buf_page_in_file */
buf_page_state state;
2014-05-05 18:20:28 +02:00
unsigned flush_type:2; /*!< if this block is currently being
flushed to disk, this tells the
flush_type.
@see buf_flush_t */
/* @} */
page_zip_des_t zip; /*!< compressed page; zip.data
(but not the data it points to) is
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
also protected by buf_pool.mutex;
state == BUF_BLOCK_ZIP_PAGE and
zip.data == NULL means an active
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.watch */
2014-12-22 16:53:17 +02:00
ulint write_size; /* Write size is set when this
page is first time written and then
if written again we check is TRIM
operation needed. */
2014-12-22 16:53:17 +02:00
ulint real_size; /*!< Real size of the page
Normal pages == srv_page_size
page compressed pages, payload
size alligned to sector boundary.
*/
buf_tmp_buffer_t* slot; /*!< Slot for temporary memory
used for encryption/compression
or NULL */
#ifdef UNIV_DEBUG
/** whether the page is in buf_pool.page_hash;
protected by buf_pool.mutex(!) and the hash bucket rw-latch */
ibool in_page_hash;
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ibool in_zip_hash; /*!< TRUE if in buf_pool.zip_hash */
#endif /* UNIV_DEBUG */
/** @name Page flushing fields
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
All these are protected by buf_pool.mutex. */
/* @{ */
UT_LIST_NODE_T(buf_page_t) list;
/*!< based on state, this is a
list node, protected either by
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.mutex or by
buf_pool.flush_list_mutex,
in one of the following lists in
buf_pool:
- BUF_BLOCK_NOT_USED: free, withdraw
- BUF_BLOCK_FILE_PAGE: flush_list
- BUF_BLOCK_ZIP_DIRTY: flush_list
- BUF_BLOCK_ZIP_PAGE: zip_clean
If bpage is part of flush_list
then the node pointers are
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
covered by buf_pool.flush_list_mutex.
Otherwise these pointers are
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
protected by buf_pool.mutex.
The contents of the list node
is undefined if !in_flush_list
&& state == BUF_BLOCK_FILE_PAGE,
or if state is one of
BUF_BLOCK_MEMORY,
BUF_BLOCK_REMOVE_HASH or
BUF_BLOCK_READY_IN_USE. */
#ifdef UNIV_DEBUG
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ibool in_flush_list; /*!< TRUE if in buf_pool.flush_list;
when buf_pool.flush_list_mutex is
free, the following should hold:
in_flush_list
== (state == BUF_BLOCK_FILE_PAGE
|| state == BUF_BLOCK_ZIP_DIRTY)
Writes to this field must be
covered by both block->mutex
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
and buf_pool.flush_list_mutex. Hence
reads can happen while holding
any one of the two mutexes */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ibool in_free_list; /*!< TRUE if in buf_pool.free; when
buf_pool.mutex is free, the following
should hold: in_free_list
== (state == BUF_BLOCK_NOT_USED) */
#endif /* UNIV_DEBUG */
lsn_t oldest_modification;
/*!< log sequence number of
the START of the log entry
written of the oldest
modification to this block
which has not yet been flushed
on disk; zero if all
modifications are on disk.
Writes to this field must be
covered by both block->mutex
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
and buf_pool.flush_list_mutex. Hence
reads can happen while holding
any one of the two mutexes */
/* @} */
/** @name LRU replacement algorithm fields
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
These fields are protected by buf_pool.mutex only (not
buf_pool.zip_mutex or buf_block_t::mutex). */
/* @{ */
UT_LIST_NODE_T(buf_page_t) LRU;
/*!< node of the LRU list */
#ifdef UNIV_DEBUG
ibool in_LRU_list; /*!< TRUE if the page is in
the LRU list; used in
debugging */
#endif /* UNIV_DEBUG */
unsigned old:1; /*!< TRUE if the block is in the old
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
blocks in buf_pool.LRU_old */
unsigned freed_page_clock:31;/*!< the value of
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.freed_page_clock
when this block was the last
time put to the head of the
LRU list; a thread is allowed
to read this for heuristic
purposes without holding any
mutex or latch */
/* @} */
unsigned access_time; /*!< time of first access, or
0 if the block was never accessed
in the buffer pool. Protected by
block mutex for buf_page_in_file()
blocks.
For state==BUF_BLOCK_MEMORY
blocks, this field can be repurposed
for something else.
When this field counts log records
and bytes allocated for recv_sys.pages,
the field is protected by
recv_sys_t::mutex. */
MDEV-19514 Defer change buffer merge until pages are requested We will remove the InnoDB background operation of merging buffered changes to secondary index leaf pages. Changes will only be merged as a result of an operation that accesses a secondary index leaf page, such as a SQL statement that performs a lookup via that index, or is modifying the index. Also ROLLBACK and some background operations, such as purging the history of committed transactions, or computing index cardinality statistics, can cause change buffer merge. Encryption key rotation will not perform change buffer merge. The motivation of this change is to simplify the I/O logic and to allow crash recovery to happen in the background (MDEV-14481). We also hope that this will reduce the number of "mystery" crashes due to corrupted data. Because change buffer merge will typically take place as a result of executing SQL statements, there should be a clearer connection between the crash and the SQL statements that were executed when the server crashed. In many cases, a slight performance improvement was observed. This is joint work with Thirunarayanan Balathandayuthapani and was tested by Axel Schwenke and Matthias Leich. The InnoDB monitor counter innodb_ibuf_merge_usec will be removed. On slow shutdown (innodb_fast_shutdown=0), we will continue to merge all buffered changes (and purge all undo log history). Two InnoDB configuration parameters will be changed as follows: innodb_disable_background_merge: Removed. This parameter existed only in debug builds. All change buffer merges will use synchronous reads. innodb_force_recovery will be changed as follows: * innodb_force_recovery=4 will be the same as innodb_force_recovery=3 (the change buffer merge cannot be disabled; it can only happen as a result of an operation that accesses a secondary index leaf page). The option used to be capable of corrupting secondary index leaf pages. Now that capability is removed, and innodb_force_recovery=4 becomes 'safe'. * innodb_force_recovery=5 (which essentially hard-wires SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED) becomes safe to use. Bogus data can be returned to SQL, but persistent InnoDB data files will not be corrupted further. * innodb_force_recovery=6 (ignore the redo log files) will be the only option that can potentially cause persistent corruption of InnoDB data files. Code changes: buf_page_t::ibuf_exist: New flag, to indicate whether buffered changes exist for a buffer pool page. Pages with pending changes can be returned by buf_page_get_gen(). Previously, the changes were always merged inside buf_page_get_gen() if needed. ibuf_page_exists(const buf_page_t&): Check if a buffered changes exist for an X-latched or read-fixed page. buf_page_get_gen(): Add the parameter allow_ibuf_merge=false. All callers that know that they may be accessing a secondary index leaf page must pass this parameter as allow_ibuf_merge=true, unless it does not matter for that caller whether all buffered changes have been applied. Assert that whenever allow_ibuf_merge holds, the page actually is a leaf page. Attempt change buffer merge only to secondary B-tree index leaf pages. btr_block_get(): Add parameter 'bool merge'. All callers of btr_block_get() should know whether the page could be a secondary index leaf page. If it is not, we should avoid consulting the change buffer bitmap to even consider a merge. This is the main interface to requesting index pages from the buffer pool. ibuf_merge_or_delete_for_page(), recv_recover_page(): Replace buf_page_get_known_nowait() with much simpler logic, because it is now guaranteed that that the block is x-latched or read-fixed. mlog_init_t::mark_ibuf_exist(): Renamed from mlog_init_t::ibuf_merge(). On crash recovery, we will no longer merge any buffered changes for the pages that we read into the buffer pool during the last batch of applying log records. buf_page_get_gen_known_nowait(), BUF_MAKE_YOUNG, BUF_KEEP_OLD: Remove. btr_search_guess_on_hash(): Merge buf_page_get_gen_known_nowait() to its only remaining caller. buf_page_make_young_if_needed(): Define as an inline function. Add the parameter buf_pool. buf_page_peek_if_young(), buf_page_peek_if_too_old(): Add the parameter buf_pool. fil_space_validate_for_mtr_commit(): Remove a bogus comment about background merge of the change buffer. btr_cur_open_at_rnd_pos_func(), btr_cur_search_to_nth_level_func(), btr_cur_open_at_index_side_func(): Use narrower data types and scopes. ibuf_read_merge_pages(): Replaces buf_read_ibuf_merge_pages(). Merge the change buffer by invoking buf_page_get_gen().
2019-10-11 17:28:15 +03:00
/** Change buffer entries for the page exist.
Protected by io_fix==BUF_IO_READ or by buf_block_t::lock. */
bool ibuf_exist;
MDEV-15528 Punch holes when pages are freed When a InnoDB data file page is freed, its contents becomes garbage, and any storage allocated in the data file is wasted. During flushing, InnoDB initializes the page with zeros if scrubbing is enabled. If the tablespace is compressed then InnoDB should punch a hole else ignore the flushing of the freed page. buf_page_t: - Replaced the variable file_page_was_freed, init_on_flush in buf_page_t with status enum variable. - Changed all debug assert of file_page_was_freed to DBUG_ASSERT of buf_page_t::status Removed buf_page_set_file_page_was_freed(), buf_page_reset_file_page_was_freed(). buf_page_free(): Newly added function which takes X-lock on the page before marking the status as FREED. So that InnoDB flush handler can avoid concurrent flush of the freed page. Also while flushing the page, InnoDB make sure that redo log which does freeing of the page also written to the disk. Currently, this function only marks the page as FREED if it is in buffer pool buf_flush_freed_page(): Newly added function which initializes zeros asynchorously if innodb_immediate_scrub_data_uncompressed is enabled. Punch a hole to the file synchorously if page_compressed is enabled. Reset the io_fix to NORMAL. Release the block from flush list and associated mutex before writing zeros or punch a hole to the file. buf_flush_page(): Removed the unnecessary usage of temporary variable "flush" fil_io(): Introduce new parameter called punch_hole. It allows fil_io() to punch the hole to the file for the given offset. buf_page_create(): Let the callers assign buf_page_t::status. Every caller should eventually invoke mtr_t::init(). fsp_page_create(): Remove the unused mtr_t parameter. In all other callers of buf_page_create() except fsp_page_create(), before invoking mtr_t::init(), invoke mtr_t::sx_latch_at_savepoint() or mtr_t::x_latch_at_savepoint(). mtr_t::init(): Initialize buf_page_t::status also for the temporary tablespace (when redo logging is disabled), to avoid assertion failures.
2020-03-09 13:25:33 +05:30
/** Block initialization status. Can be modified while holding io_fix
or buf_block_t::lock X-latch */
enum {
/** the page was read normally and should be flushed normally */
NORMAL = 0,
/** the page was (re)initialized, and the doublewrite buffer can be
skipped on the next flush */
INIT_ON_FLUSH,
/** the page was freed and need to be flushed.
For page_compressed, page flush will punch a hole to free space.
Else if innodb_immediate_scrub_data_uncompressed, the page will
be overwritten with zeroes. */
FREED
} status;
void fix() { buf_fix_count++; }
uint32_t unfix()
{
uint32_t count= buf_fix_count--;
ut_ad(count != 0);
return count - 1;
}
/** @return the physical size, in bytes */
ulint physical_size() const
{
return zip.ssize ? (UNIV_ZIP_SIZE_MIN >> 1) << zip.ssize : srv_page_size;
}
/** @return the ROW_FORMAT=COMPRESSED physical size, in bytes
@retval 0 if not compressed */
ulint zip_size() const
{
return zip.ssize ? (UNIV_ZIP_SIZE_MIN >> 1) << zip.ssize : 0;
}
};
/** The buffer control block structure */
struct buf_block_t{
/** @name General fields */
/* @{ */
buf_page_t page; /*!< page information; this must
be the first field, so that
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.page_hash can point
to buf_page_t or buf_block_t */
byte* frame; /*!< pointer to buffer frame which
is of size srv_page_size, and
aligned to an address divisible by
srv_page_size */
BPageLock lock; /*!< read-write lock of the buffer
frame */
UT_LIST_NODE_T(buf_block_t) unzip_LRU;
/*!< node of the decompressed LRU list;
a block is in the unzip_LRU list
if page.state == BUF_BLOCK_FILE_PAGE
and page.zip.data != NULL */
#ifdef UNIV_DEBUG
ibool in_unzip_LRU_list;/*!< TRUE if the page is in the
decompressed LRU list;
used in debugging */
ibool in_withdraw_list;
#endif /* UNIV_DEBUG */
uint32_t lock_hash_val; /*!< hashed value of the page address
in the record lock hash table;
protected by buf_block_t::lock
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
(or buf_block_t::mutex, buf_pool.mutex
in buf_page_get_gen(),
buf_page_init_for_read()
and buf_page_create()) */
/* @} */
/** @name Optimistic search field */
/* @{ */
ib_uint64_t modify_clock; /*!< this clock is incremented every
time a pointer to a record on the
page may become obsolete; this is
used in the optimistic cursor
positioning: if the modify clock has
not changed, we know that the pointer
is still valid; this field may be
changed if the thread (1) owns the
pool mutex and the page is not
bufferfixed, or (2) the thread has an
x-latch on the block */
/* @} */
2017-02-23 23:05:12 +02:00
#ifdef BTR_CUR_HASH_ADAPT
/** @name Hash search fields (unprotected)
NOTE that these fields are NOT protected by any semaphore! */
/* @{ */
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC The -Wconversion in GCC seems to be stricter than in clang. GCC at least since version 4.4.7 issues truncation warnings for assignments to bitfields, while clang 10 appears to only issue warnings when the sizes in bytes rounded to the nearest integer powers of 2 are different. Before GCC 10.0.0, -Wconversion required more casts and would not allow some operations, such as x<<=1 or x+=1 on a data type that is narrower than int. GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining about x|=y even when x and y are compatible types that are narrower than int. Hence, we must rewrite some x|=y as x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion. In GCC 6 and later, the warning for assigning wider to bitfields that are narrower than 8, 16, or 32 bits can be suppressed by applying a bitwise & with the exact bitmask of the bitfield. For older GCC, we must disable -Wconversion for GCC 4 or 5 in such cases. The bitwise negation operator appears to promote short integers to a wider type, and hence we must add explicit truncation casts around them. Microsoft Visual C does not allow a static_cast to truncate a constant, such as static_cast<byte>(1) truncating int. Hence, we will use the constructor-style cast byte(~1) for such cases. This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0, clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019) on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 19:46:41 +02:00
volatile uint16_t n_bytes; /*!< recommended prefix length for hash
search: number of bytes in
an incomplete last field */
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC The -Wconversion in GCC seems to be stricter than in clang. GCC at least since version 4.4.7 issues truncation warnings for assignments to bitfields, while clang 10 appears to only issue warnings when the sizes in bytes rounded to the nearest integer powers of 2 are different. Before GCC 10.0.0, -Wconversion required more casts and would not allow some operations, such as x<<=1 or x+=1 on a data type that is narrower than int. GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining about x|=y even when x and y are compatible types that are narrower than int. Hence, we must rewrite some x|=y as x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion. In GCC 6 and later, the warning for assigning wider to bitfields that are narrower than 8, 16, or 32 bits can be suppressed by applying a bitwise & with the exact bitmask of the bitfield. For older GCC, we must disable -Wconversion for GCC 4 or 5 in such cases. The bitwise negation operator appears to promote short integers to a wider type, and hence we must add explicit truncation casts around them. Microsoft Visual C does not allow a static_cast to truncate a constant, such as static_cast<byte>(1) truncating int. Hence, we will use the constructor-style cast byte(~1) for such cases. This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0, clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019) on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 19:46:41 +02:00
volatile uint16_t n_fields; /*!< recommended prefix length for hash
search: number of full fields */
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC The -Wconversion in GCC seems to be stricter than in clang. GCC at least since version 4.4.7 issues truncation warnings for assignments to bitfields, while clang 10 appears to only issue warnings when the sizes in bytes rounded to the nearest integer powers of 2 are different. Before GCC 10.0.0, -Wconversion required more casts and would not allow some operations, such as x<<=1 or x+=1 on a data type that is narrower than int. GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining about x|=y even when x and y are compatible types that are narrower than int. Hence, we must rewrite some x|=y as x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion. In GCC 6 and later, the warning for assigning wider to bitfields that are narrower than 8, 16, or 32 bits can be suppressed by applying a bitwise & with the exact bitmask of the bitfield. For older GCC, we must disable -Wconversion for GCC 4 or 5 in such cases. The bitwise negation operator appears to promote short integers to a wider type, and hence we must add explicit truncation casts around them. Microsoft Visual C does not allow a static_cast to truncate a constant, such as static_cast<byte>(1) truncating int. Hence, we will use the constructor-style cast byte(~1) for such cases. This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0, clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019) on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 19:46:41 +02:00
uint16_t n_hash_helps; /*!< counter which controls building
of a new hash index for the page */
volatile bool left_side; /*!< true or false, depending on
whether the leftmost record of several
records with the same prefix should be
indexed in the hash index */
/* @} */
/** @name Hash search fields
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
These 5 fields may only be modified when:
we are holding the appropriate x-latch in btr_search_latches[], and
one of the following holds:
(1) the block state is BUF_BLOCK_FILE_PAGE, and
we are holding an s-latch or x-latch on buf_block_t::lock, or
(2) buf_block_t::buf_fix_count == 0, or
(3) the block state is BUF_BLOCK_REMOVE_HASH.
An exception to this is when we init or create a page
in the buffer pool in buf0buf.cc.
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
Another exception for buf_pool_t::clear_hash_index() is that
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
assigning block->index = NULL (and block->n_pointers = 0)
is allowed whenever btr_search_own_all(RW_LOCK_X).
Another exception is that ha_insert_for_fold_func() may
decrement n_pointers without holding the appropriate latch
in btr_search_latches[]. Thus, n_pointers must be
protected by atomic memory access.
This implies that the fields may be read without race
condition whenever any of the following hold:
- the btr_search_latches[] s-latch or x-latch is being held, or
- the block state is not BUF_BLOCK_FILE_PAGE or BUF_BLOCK_REMOVE_HASH,
and holding some latch prevents the state from changing to that.
Some use of assert_block_ahi_empty() or assert_block_ahi_valid()
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
is prone to race conditions while buf_pool_t::clear_hash_index() is
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
executing (the adaptive hash index is being disabled). Such use
is explicitly commented. */
/* @{ */
2017-02-23 23:05:12 +02:00
# if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
Atomic_counter<ulint>
n_pointers; /*!< used in debugging: the number of
pointers in the adaptive hash index
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
pointing to this frame;
protected by atomic memory access
or btr_search_own_all(). */
# define assert_block_ahi_empty(block) \
ut_a((block)->n_pointers == 0)
# define assert_block_ahi_empty_on_init(block) do { \
UNIV_MEM_VALID(&(block)->n_pointers, sizeof (block)->n_pointers); \
assert_block_ahi_empty(block); \
} while (0)
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
# define assert_block_ahi_valid(block) \
ut_a((block)->index || (block)->n_pointers == 0)
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
# else /* UNIV_AHI_DEBUG || UNIV_DEBUG */
# define assert_block_ahi_empty(block) /* nothing */
# define assert_block_ahi_empty_on_init(block) /* nothing */
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
# define assert_block_ahi_valid(block) /* nothing */
2017-02-23 23:05:12 +02:00
# endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
unsigned curr_n_fields:10;/*!< prefix length for hash indexing:
number of full fields */
unsigned curr_n_bytes:15;/*!< number of bytes in hash
indexing */
unsigned curr_left_side:1;/*!< TRUE or FALSE in hash indexing */
dict_index_t* index; /*!< Index for which the
adaptive hash index has been
created, or NULL if the page
does not exist in the
index. Note that it does not
guarantee that the index is
complete, though: there may
have been hash collisions,
record deletions, etc. */
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
/* @} */
#else /* BTR_CUR_HASH_ADAPT */
# define assert_block_ahi_empty(block) /* nothing */
# define assert_block_ahi_empty_on_init(block) /* nothing */
Bug#24346574 PAGE CLEANER THREAD, ASSERT BLOCK->N_POINTERS == 0 btr_search_drop_page_hash_index(): Do not return before ensuring that block->index=NULL, even if !btr_search_enabled. We would typically still skip acquiring the AHI latch when the AHI is disabled, because block->index would already be NULL. Only if the AHI is in the process of being disabled, we would wait for the AHI latch and then notice that block->index=NULL and return. The above bug was a regression caused in MySQL 5.7.9 by the fix of Bug#21407023: DISABLING AHI SHOULD AVOID TAKING AHI LATCH The rest of this patch improves diagnostics by adding assertions. assert_block_ahi_valid(): A debug predicate for checking that block->n_pointers!=0 implies block->index!=NULL. assert_block_ahi_empty(): A debug predicate for checking that block->n_pointers==0. buf_block_init(): Instead of assigning block->n_pointers=0, assert_block_ahi_empty(block). buf_pool_clear_hash_index(): Clarify comments, and assign block->n_pointers=0 before assigning block->index=NULL. The wrong ordering could make block->n_pointers appear incorrect in debug assertions. This bug was introduced in MySQL 5.1.52 by Bug#13006367 62487: INNODB TAKES 3 MINUTES TO CLEAN UP THE ADAPTIVE HASH INDEX AT SHUTDOWN i_s_innodb_buffer_page_get_info(): Add a comment that the IS_HASHED column in the INFORMATION_SCHEMA views INNODB_BUFFER_POOL_PAGE and INNODB_BUFFER_PAGE_LRU may show false positives (there may be no pointers after all.) ha_insert_for_fold_func(), ha_delete_hash_node(), ha_search_and_update_if_found_func(): Use atomics for updating buf_block_t::n_pointers. While buf_block_t::index is always protected by btr_search_x_lock(index), in ha_insert_for_fold_func() the n_pointers-- may belong to another dict_index_t whose btr_search_latches[] we are not holding. RB: 13879 Reviewed-by: Jimmy Yang <jimmy.yang@oracle.com>
2016-09-02 17:28:54 +03:00
# define assert_block_ahi_valid(block) /* nothing */
2017-02-23 23:05:12 +02:00
#endif /* BTR_CUR_HASH_ADAPT */
bool skip_flush_check;
/*!< Skip check in buf_dblwr_check_block
during bulk load, protected by lock.*/
# ifdef UNIV_DEBUG
/** @name Debug fields */
/* @{ */
rw_lock_t* debug_latch; /*!< in the debug version, each thread
which bufferfixes the block acquires
an s-latch here; so we can use the
debug utilities in sync0rw */
/* @} */
# endif
BPageMutex mutex; /*!< mutex protecting this block:
state (also protected by the buffer
pool mutex), io_fix, buf_fix_count,
and accessed; we introduce this new
mutex in InnoDB-5.1 to relieve
contention on the buffer pool mutex */
void fix() { page.fix(); }
uint32_t unfix() { return page.unfix(); }
/** @return the physical size, in bytes */
ulint physical_size() const { return page.physical_size(); }
/** @return the ROW_FORMAT=COMPRESSED physical size, in bytes
@retval 0 if not compressed */
ulint zip_size() const { return page.zip_size(); }
};
/** Check if a buf_block_t object is in a valid state
@param block buffer block
@return TRUE if valid */
#define buf_block_state_valid(block) \
(buf_block_get_state(block) >= BUF_BLOCK_NOT_USED \
&& (buf_block_get_state(block) <= BUF_BLOCK_REMOVE_HASH))
/**********************************************************************//**
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
Compute the hash fold value for blocks in buf_pool.zip_hash. */
/* @{ */
#define BUF_POOL_ZIP_FOLD_PTR(ptr) (ulint(ptr) >> srv_page_size_shift)
#define BUF_POOL_ZIP_FOLD(b) BUF_POOL_ZIP_FOLD_PTR((b)->frame)
#define BUF_POOL_ZIP_FOLD_BPAGE(b) BUF_POOL_ZIP_FOLD((buf_block_t*) (b))
/* @} */
/** A "Hazard Pointer" class used to iterate over page lists
inside the buffer pool. A hazard pointer is a buf_page_t pointer
which we intend to iterate over next and we want it remain valid
even after we release the buffer pool mutex. */
class HazardPointer
{
public:
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
virtual ~HazardPointer() {}
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** @return current value */
buf_page_t *get() const { ut_ad(mutex_own(m_mutex)); return m_hp; }
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** Set current value
@param bpage buffer block to be set as hp */
void set(buf_page_t *bpage)
{
ut_ad(mutex_own(m_mutex));
ut_ad(!bpage || buf_page_in_file(bpage));
m_hp= bpage;
}
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** Checks if a bpage is the hp
@param bpage buffer block to be compared
@return true if it is hp */
bool is_hp(const buf_page_t *bpage) const
{ ut_ad(mutex_own(m_mutex)); return bpage == m_hp; }
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** Adjust the value of hp. This happens when some
other thread working on the same list attempts to
remove the hp from the list. */
virtual void adjust(const buf_page_t*) = 0;
#ifdef UNIV_DEBUG
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** mutex that protects access to the m_hp. */
const ib_mutex_t *m_mutex= nullptr;
#endif /* UNIV_DEBUG */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
protected:
/** hazard pointer */
buf_page_t *m_hp= nullptr;
};
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** Class implementing buf_pool.flush_list hazard pointer */
class FlushHp : public HazardPointer
{
public:
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
~FlushHp() override {}
/** Adjust the value of hp. This happens when some
other thread working on the same list attempts to
remove the hp from the list.
@param bpage buffer block to be compared */
void adjust(const buf_page_t *bpage) override
{
ut_ad(bpage != NULL);
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/* We only support reverse traversal for now. */
if (is_hp(bpage))
m_hp= UT_LIST_GET_PREV(list, m_hp);
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_ad(!m_hp || m_hp->in_flush_list);
}
};
/** Class implementing buf_pool.LRU hazard pointer */
class LRUHp : public HazardPointer {
public:
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
~LRUHp() override {}
/** Adjust the value of hp. This happens when some
other thread working on the same list attempts to
remove the hp from the list.
@param bpage buffer block to be compared */
void adjust(const buf_page_t *bpage) override
{
ut_ad(bpage);
/** We only support reverse traversal for now. */
if (is_hp(bpage))
m_hp= UT_LIST_GET_PREV(LRU, m_hp);
ut_ad(!m_hp || m_hp->in_LRU_list);
}
};
/** Special purpose iterators to be used when scanning the LRU list.
The idea is that when one thread finishes the scan it leaves the
itr in that position and the other thread can start scan from
there */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
class LRUItr : public LRUHp {
public:
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
LRUItr() : LRUHp() {}
~LRUItr() override {}
/** Select from where to start a scan. If we have scanned
too deep into the LRU list it resets the value to the tail
of the LRU list.
@return buf_page_t from where to start scan. */
inline buf_page_t *start();
};
/** Struct that is embedded in the free zip blocks */
struct buf_buddy_free_t {
union {
ulint size; /*!< size of the block */
byte bytes[FIL_PAGE_DATA];
/*!< stamp[FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID]
== BUF_BUDDY_FREE_STAMP denotes a free
block. If the space_id field of buddy
block != BUF_BUDDY_FREE_STAMP, the block
is not in any zip_free list. If the
space_id is BUF_BUDDY_FREE_STAMP then
stamp[0] will contain the
buddy block size. */
} stamp;
buf_page_t bpage; /*!< Embedded bpage descriptor */
UT_LIST_NODE_T(buf_buddy_free_t) list;
/*!< Node of zip_free list */
};
/** @brief The buffer pool statistics structure. */
struct buf_pool_stat_t{
ulint n_page_gets; /*!< number of page gets performed;
also successful searches through
the adaptive hash index are
counted as page gets; this field
is NOT protected by the buffer
pool mutex */
ulint n_pages_read; /*!< number read operations */
ulint n_pages_written;/*!< number write operations */
ulint n_pages_created;/*!< number of pages created
in the pool with no read */
ulint n_ra_pages_read_rnd;/*!< number of pages read in
as part of random read ahead */
ulint n_ra_pages_read;/*!< number of pages read in
as part of read ahead */
ulint n_ra_pages_evicted;/*!< number of read ahead
pages that are evicted without
being accessed */
ulint n_pages_made_young; /*!< number of pages made young, in
calls to buf_LRU_make_block_young() */
ulint n_pages_not_made_young; /*!< number of pages not made
young because the first access
was not long enough ago, in
buf_page_peek_if_too_old() */
ulint LRU_bytes; /*!< LRU size in bytes */
ulint flush_list_bytes;/*!< flush_list size in bytes */
};
/** Statistics of buddy blocks of a given size. */
struct buf_buddy_stat_t {
/** Number of blocks allocated from the buddy system. */
ulint used;
/** Number of blocks relocated by the buddy system. */
ib_uint64_t relocated;
/** Total duration of block relocations, in microseconds. */
ib_uint64_t relocated_usec;
};
/** The buffer pool */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
class buf_pool_t
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** A chunk of buffers */
struct chunk_t
{
/** number of elements in blocks[] */
size_t size;
/** memory allocated for the page frames */
unsigned char *mem;
/** descriptor of mem */
ut_new_pfx_t mem_pfx;
/** array of buffer control blocks */
buf_block_t *blocks;
/** Map of first page frame address to chunks[] */
using map= std::map<const void*, chunk_t*, std::less<const void*>,
ut_allocator<std::pair<const void* const,chunk_t*>>>;
/** Chunk map that may be under construction by buf_resize_thread() */
static map *map_reg;
/** Current chunk map for lookup only */
static map *map_ref;
/** @return the memory size bytes. */
size_t mem_size() const { return mem_pfx.m_size; }
/** Register the chunk */
void reg() { map_reg->emplace(map::value_type(blocks->frame, this)); }
/** Allocate a chunk of buffer frames.
@param bytes requested size
@return whether the allocation succeeded */
inline bool create(size_t bytes);
#ifdef UNIV_DEBUG
/** Find a block that points to a ROW_FORMAT=COMPRESSED page
@param data pointer to the start of a ROW_FORMAT=COMPRESSED page frame
@return the block
@retval nullptr if not found */
const buf_block_t *contains_zip(const void *data) const
{
const buf_block_t *block= blocks;
for (auto i= size; i--; block++)
if (block->page.zip.data == data)
return block;
return nullptr;
}
/** Check that all blocks are in a replaceable state.
@return address of a non-free block
@retval nullptr if all freed */
inline const buf_block_t *not_freed() const;
#endif /* UNIV_DEBUG */
};
/** Withdraw blocks from the buffer pool until meeting withdraw_target.
@return whether retry is needed */
inline bool withdraw_blocks();
/** Determine if a pointer belongs to a buf_block_t. It can be a pointer to
the buf_block_t itself or a member of it.
@param ptr a pointer that will not be dereferenced
@return whether the ptr belongs to a buf_block_t struct */
bool is_block_field(const void *ptr) const
{
const chunk_t *chunk= chunks;
const chunk_t *const echunk= chunk + ut_min(n_chunks, n_chunks_new);
/* TODO: protect chunks with a mutex (the older pointer will
currently remain during resize()) */
for (; chunk < echunk; chunk++)
if (ptr >= reinterpret_cast<const void*>(chunk->blocks) &&
ptr < reinterpret_cast<const void*>(chunk->blocks + chunk->size))
return true;
return false;
}
/** Try to reallocate a control block.
@param block control block to reallocate
@return whether the reallocation succeeded */
inline bool realloc(buf_block_t *block);
public:
bool is_initialised() const { return chunks != nullptr; }
/** Create the buffer pool.
@return whether the creation failed */
bool create();
/** Clean up after successful create() */
void close();
/** Resize from srv_buf_pool_old_size to srv_buf_pool_size. */
inline void resize();
/** @return whether resize() is in progress */
bool resize_in_progress() const
{
return UNIV_UNLIKELY(resizing.load(std::memory_order_relaxed) ||
withdrawing.load(std::memory_order_relaxed));
}
/** @return the withdraw_clock */
ulint withdraw_clock() const
{ return withdraw_clock_.load(std::memory_order_relaxed); }
/** Verify the possibility that a stored page is not in buffer pool.
@param withdraw_clock the withdraw clock of the page
@return whether the page might be relocated */
bool is_obsolete(ulint withdraw_clock) const
{
return UNIV_UNLIKELY(withdrawing.load(std::memory_order_relaxed) ||
this->withdraw_clock() != withdraw_clock);
}
/** @return the current size in blocks */
size_t get_n_pages() const
{
ut_ad(is_initialised());
size_t size= 0;
for (auto j= n_chunks; j--; )
size+= chunks[j].size;
return size;
}
/** Determine whether a frame is intended to be withdrawn during resize().
@param ptr pointer within a buf_block_t::frame
@return whether the frame will be withdrawn */
bool will_be_withdrawn(const byte *ptr) const
{
ut_ad(curr_size < old_size);
ut_ad(!resizing.load(std::memory_order_relaxed) || mutex_own(&mutex));
for (const chunk_t *chunk= chunks + n_chunks_new,
* const echunk= chunks + n_chunks;
chunk != echunk; chunk++)
if (ptr >= chunk->blocks->frame &&
ptr < (chunk->blocks + chunk->size - 1)->frame + srv_page_size)
return true;
return false;
}
/** Determine whether a block is intended to be withdrawn during resize().
@param bpage buffer pool block
@return whether the frame will be withdrawn */
bool will_be_withdrawn(const buf_page_t &bpage) const
{
ut_ad(curr_size < old_size);
ut_ad(!resizing.load(std::memory_order_relaxed) || mutex_own(&mutex));
for (const chunk_t *chunk= chunks + n_chunks_new,
* const echunk= chunks + n_chunks;
chunk != echunk; chunk++)
if (&bpage >= &chunk->blocks->page &&
&bpage < &chunk->blocks[chunk->size].page)
return true;
return false;
}
#ifdef UNIV_DEBUG
/** Find a block that points to a ROW_FORMAT=COMPRESSED page
@param data pointer to the start of a ROW_FORMAT=COMPRESSED page frame
@return the block
@retval nullptr if not found */
const buf_block_t *contains_zip(const void *data) const
{
ut_ad(mutex_own(&mutex));
for (const chunk_t *chunk= chunks, * const end= chunks + n_chunks;
chunk != end; chunk++)
if (const buf_block_t *block= chunk->contains_zip(data))
return block;
return nullptr;
}
/** Assert that all buffer pool pages are in a replaceable state */
void assert_all_freed();
#endif /* UNIV_DEBUG */
#ifdef BTR_CUR_HASH_ADAPT
/** Clear the adaptive hash index on all pages in the buffer pool. */
inline void clear_hash_index();
/** Get a buffer block from an adaptive hash index pointer.
This function does not return if the block is not identified.
@param ptr pointer to within a page frame
@return pointer to block, never NULL */
inline buf_block_t* block_from_ahi(const byte *ptr) const;
#endif /* BTR_CUR_HASH_ADAPT */
bool is_block_mutex(const BPageMutex *m) const
{ return is_block_field(reinterpret_cast<const void*>(m)); }
bool is_block_lock(const BPageLock *l) const
{ return is_block_field(reinterpret_cast<const void*>(l)); }
/** Determine if a buffer block was created by chunk_t::create().
@param block block descriptor (not dereferenced)
@return whether block has been created by chunk_t::create() */
bool is_uncompressed(const buf_block_t *block) const
{
/* The pointer should be aligned. */
return !(size_t(block) % sizeof *block) &&
is_block_field(reinterpret_cast<const void*>(block));
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/** Validate the buffer pool. */
void validate();
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
#if defined UNIV_DEBUG_PRINT || defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/** Write information of the buf_pool to the error log. */
void print();
#endif /* UNIV_DEBUG_PRINT || UNIV_DEBUG || UNIV_BUF_DEBUG */
/** @name General fields */
/* @{ */
BufPoolMutex mutex; /*!< Buffer pool mutex */
BufPoolZipMutex zip_mutex; /*!< Zip mutex, protects compressed
only pages (of type buf_page_t, not
buf_block_t */
ulint curr_pool_size; /*!< Current pool size in bytes */
ulint LRU_old_ratio; /*!< Reserve this much of the buffer
pool for "old" blocks */
#ifdef UNIV_DEBUG
ulint buddy_n_frames; /*!< Number of frames allocated from
the buffer pool to the buddy system */
#endif
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ulint mutex_exit_forbidden; /*!< Forbid release mutex */
#endif
ut_allocator<unsigned char> allocator; /*!< Allocator used for
allocating memory for the the "chunks"
member. */
volatile ulint n_chunks; /*!< number of buffer pool chunks */
volatile ulint n_chunks_new; /*!< new number of buffer pool chunks */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
chunk_t* chunks; /*!< buffer pool chunks */
chunk_t* chunks_old; /*!< old buffer pool chunks to be freed
after resizing buffer pool */
ulint curr_size; /*!< current pool size in pages */
ulint old_size; /*!< previous pool size in pages */
ulint read_ahead_area;/*!< size in pages of the area which
the read-ahead algorithms read if
invoked */
hash_table_t* page_hash; /*!< hash table of buf_page_t or
buf_block_t file pages,
buf_page_in_file() == TRUE,
indexed by (space_id, offset).
page_hash is protected by an
array of mutexes.
Changes in page_hash are protected
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
by buf_pool.mutex and the relevant
page_hash mutex. Lookups can happen
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
while holding the buf_pool.mutex or
the relevant page_hash mutex. */
hash_table_t* page_hash_old; /*!< old pointer to page_hash to be
freed after resizing buffer pool */
hash_table_t* zip_hash; /*!< hash table of buf_block_t blocks
whose frames are allocated to the
zip buddy system,
indexed by block->frame */
ulint n_pend_reads; /*!< number of pending read
operations */
Atomic_counter<ulint>
n_pend_unzip; /*!< number of pending decompressions */
time_t last_printout_time;
/*!< when buf_print_io was last time
called */
buf_buddy_stat_t buddy_stat[BUF_BUDDY_SIZES_MAX + 1];
/*!< Statistics of buddy system,
indexed by block size */
buf_pool_stat_t stat; /*!< current statistics */
buf_pool_stat_t old_stat; /*!< old statistics */
/* @} */
/** @name Page flushing algorithm fields */
/* @{ */
FlushListMutex flush_list_mutex;/*!< mutex protecting the
flush list access. This mutex
protects flush_list, flush_rbt
and bpage::list pointers when
the bpage is on flush_list. It
also protects writes to
bpage::oldest_modification and
flush_list_hp */
FlushHp flush_hp;/*!< "hazard pointer"
used during scan of flush_list
while doing flush list batch.
Protected by flush_list_mutex */
UT_LIST_BASE_NODE_T(buf_page_t) flush_list;
/*!< base node of the modified block
list */
ibool init_flush[BUF_FLUSH_N_TYPES];
/*!< this is TRUE when a flush of the
given type is being initialized */
ulint n_flush[BUF_FLUSH_N_TYPES];
/*!< this is the number of pending
writes in the given flush type */
os_event_t no_flush[BUF_FLUSH_N_TYPES];
/*!< this is in the set state
when there is no flush batch
of the given type running;
os_event_set() and os_event_reset()
are protected by buf_pool_t::mutex */
ib_rbt_t* flush_rbt; /*!< a red-black tree is used
exclusively during recovery to
speed up insertions in the
flush_list. This tree contains
blocks in order of
oldest_modification LSN and is
kept in sync with the
flush_list.
Each member of the tree MUST
also be on the flush_list.
This tree is relevant only in
recovery and is set to NULL
once the recovery is over.
Protected by flush_list_mutex */
unsigned freed_page_clock;/*!< a sequence number used
to count the number of buffer
blocks removed from the end of
the LRU list; NOTE that this
counter may wrap around at 4
billion! A thread is allowed
to read this for heuristic
purposes without holding any
mutex or latch */
ibool try_LRU_scan; /*!< Set to FALSE when an LRU
scan for free block fails. This
flag is used to avoid repeated
scans of LRU list when we know
that there is no free block
available in the scan depth for
eviction. Set to TRUE whenever
we flush a batch from the
buffer pool. Protected by the
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.mutex */
/* @} */
/** @name LRU replacement algorithm fields */
/* @{ */
UT_LIST_BASE_NODE_T(buf_page_t) free;
/*!< base node of the free
block list */
UT_LIST_BASE_NODE_T(buf_page_t) withdraw;
/*!< base node of the withdraw
block list. It is only used during
shrinking buffer pool size, not to
reuse the blocks will be removed */
ulint withdraw_target;/*!< target length of withdraw
block list, when withdrawing */
/** "hazard pointer" used during scan of LRU while doing
LRU list batch. Protected by buf_pool_t::mutex. */
LRUHp lru_hp;
/** Iterator used to scan the LRU list when searching for
replacable victim. Protected by buf_pool_t::mutex. */
LRUItr lru_scan_itr;
/** Iterator used to scan the LRU list when searching for
single page flushing victim. Protected by buf_pool_t::mutex. */
LRUItr single_scan_itr;
UT_LIST_BASE_NODE_T(buf_page_t) LRU;
/*!< base node of the LRU list */
buf_page_t* LRU_old; /*!< pointer to the about
LRU_old_ratio/BUF_LRU_OLD_RATIO_DIV
oldest blocks in the LRU list;
NULL if LRU length less than
BUF_LRU_OLD_MIN_LEN;
NOTE: when LRU_old != NULL, its length
should always equal LRU_old_len */
ulint LRU_old_len; /*!< length of the LRU list from
the block to which LRU_old points
onward, including that block;
see buf0lru.cc for the restrictions
on this value; 0 if LRU_old == NULL;
NOTE: LRU_old_len must be adjusted
whenever LRU_old shrinks or grows! */
UT_LIST_BASE_NODE_T(buf_block_t) unzip_LRU;
/*!< base node of the
unzip_LRU list */
/* @} */
/** @name Buddy allocator fields
The buddy allocator is used for allocating compressed page
frames and buf_page_t descriptors of blocks that exist
in the buffer pool only in compressed form. */
/* @{ */
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
UT_LIST_BASE_NODE_T(buf_page_t) zip_clean;
/*!< unmodified compressed pages */
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
UT_LIST_BASE_NODE_T(buf_buddy_free_t) zip_free[BUF_BUDDY_SIZES_MAX];
/*!< buddy free lists */
#if BUF_BUDDY_LOW > UNIV_ZIP_SIZE_MIN
# error "BUF_BUDDY_LOW > UNIV_ZIP_SIZE_MIN"
#endif
/* @} */
buf_page_t* watch;
/*!< Sentinel records for buffer
pool watches. Protected by
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
buf_pool.mutex. */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** Reserve a buffer. */
buf_tmp_buffer_t *io_buf_reserve() { return io_buf.reserve(); }
private:
/** Temporary memory for page_compressed and encrypted I/O */
struct io_buf_t
{
/** number of elements in slots[] */
ulint n_slots;
/** array of slots */
buf_tmp_buffer_t *slots;
void create(ulint n_slots)
{
this->n_slots= n_slots;
slots= static_cast<buf_tmp_buffer_t*>
(ut_malloc_nokey(n_slots * sizeof *slots));
memset((void*) slots, 0, n_slots * sizeof *slots);
}
void close()
{
for (buf_tmp_buffer_t *s= slots, *e= slots + n_slots; s != e; s++)
{
aligned_free(s->crypt_buf);
aligned_free(s->comp_buf);
}
ut_free(slots);
slots= nullptr;
n_slots= 0;
}
/** Reserve a buffer */
buf_tmp_buffer_t *reserve()
{
for (buf_tmp_buffer_t *s= slots, *e= slots + n_slots; s != e; s++)
if (s->acquire())
return s;
return nullptr;
}
} io_buf;
/** whether resize() is in the critical path */
std::atomic<bool> resizing;
/** whether withdrawing buffer pool pages might cause page relocation */
std::atomic<bool> withdrawing;
/** a counter that is incremented every time a pointer to a page may
become obsolete */
std::atomic<ulint> withdraw_clock_;
};
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
/** The InnoDB buffer pool */
extern buf_pool_t buf_pool;
/** @name Accessors for buffer pool mutexes
Use these instead of accessing buffer pool mutexes directly. */
/* @{ */
2014-05-05 18:20:28 +02:00
/** Test if block->mutex is owned. */
#define buf_page_mutex_own(b) (b)->mutex.is_owned()
2014-05-05 18:20:28 +02:00
/** Acquire the block->mutex. */
#define buf_page_mutex_enter(b) do { \
2014-05-05 18:20:28 +02:00
mutex_enter(&(b)->mutex); \
} while (0)
/** Release the trx->mutex. */
#define buf_page_mutex_exit(b) do { \
(b)->mutex.exit(); \
2014-05-05 18:20:28 +02:00
} while (0)
/** Get appropriate page_hash_lock. */
2018-02-16 22:15:51 +03:00
UNIV_INLINE
rw_lock_t*
buf_page_hash_lock_get(const page_id_t& page_id)
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
return hash_get_lock(buf_pool.page_hash, page_id.fold());
}
/** If not appropriate page_hash_lock, relock until appropriate. */
# define buf_page_hash_lock_s_confirm(hash_lock, page_id)\
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
hash_lock_s_confirm(hash_lock, buf_pool.page_hash, (page_id).fold())
# define buf_page_hash_lock_x_confirm(hash_lock, page_id)\
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
hash_lock_x_confirm(hash_lock, buf_pool.page_hash, (page_id).fold())
#ifdef UNIV_DEBUG
/** Test if page_hash lock is held in s-mode. */
# define buf_page_hash_lock_held_s(bpage) \
rw_lock_own(buf_page_hash_lock_get((bpage)->id), RW_LOCK_S)
/** Test if page_hash lock is held in x-mode. */
# define buf_page_hash_lock_held_x(bpage) \
rw_lock_own(buf_page_hash_lock_get((bpage)->id), RW_LOCK_X)
/** Test if page_hash lock is held in x or s-mode. */
# define buf_page_hash_lock_held_s_or_x(bpage)\
(buf_page_hash_lock_held_s(bpage) \
|| buf_page_hash_lock_held_x(bpage))
# define buf_block_hash_lock_held_s(block) \
buf_page_hash_lock_held_s(&(block)->page)
# define buf_block_hash_lock_held_x(block) \
buf_page_hash_lock_held_x(&(block)->page)
# define buf_block_hash_lock_held_s_or_x(block) \
buf_page_hash_lock_held_s_or_x(&(block)->page)
#else /* UNIV_DEBUG */
# define buf_page_hash_lock_held_s(p) (TRUE)
# define buf_page_hash_lock_held_x(p) (TRUE)
# define buf_page_hash_lock_held_s_or_x(p) (TRUE)
# define buf_block_hash_lock_held_s(p) (TRUE)
# define buf_block_hash_lock_held_x(p) (TRUE)
# define buf_block_hash_lock_held_s_or_x(p) (TRUE)
#endif /* UNIV_DEBUG */
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/** Forbid the release of the buffer pool mutex. */
# define buf_pool_mutex_exit_forbid() do { \
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_ad(mutex_own(&buf_pool.mutex)); \
buf_pool.mutex_exit_forbidden++; \
} while (0)
/** Allow the release of the buffer pool mutex. */
# define buf_pool_mutex_exit_allow() do { \
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_ad(mutex_own(&buf_pool.mutex)); \
ut_ad(buf_pool.mutex_exit_forbidden--); \
} while (0)
#else
/** Forbid the release of the buffer pool mutex. */
# define buf_pool_mutex_exit_forbid() ((void) 0)
/** Allow the release of the buffer pool mutex. */
# define buf_pool_mutex_exit_allow() ((void) 0)
#endif
/* @} */
/**********************************************************************
Let us list the consistency conditions for different control block states.
NOT_USED: is in free list, not in LRU list, not in flush list, nor
page hash table
READY_FOR_USE: is not in free list, LRU list, or flush list, nor page
hash table
MEMORY: is not in free list, LRU list, or flush list, nor page
hash table
FILE_PAGE: space and offset are defined, is in page hash table
if io_fix == BUF_IO_WRITE,
pool: no_flush[flush_type] is in reset state,
pool: n_flush[flush_type] > 0
(1) if buf_fix_count == 0, then
is in LRU list, not in free list
is in flush list,
if and only if oldest_modification > 0
is x-locked,
if and only if io_fix == BUF_IO_READ
is s-locked,
if and only if io_fix == BUF_IO_WRITE
(2) if buf_fix_count > 0, then
is not in LRU list, not in free list
is in flush list,
if and only if oldest_modification > 0
if io_fix == BUF_IO_READ,
is x-locked
if io_fix == BUF_IO_WRITE,
is s-locked
State transitions:
NOT_USED => READY_FOR_USE
READY_FOR_USE => MEMORY
READY_FOR_USE => FILE_PAGE
MEMORY => NOT_USED
FILE_PAGE => NOT_USED NOTE: This transition is allowed if and only if
(1) buf_fix_count == 0,
(2) oldest_modification == 0, and
(3) io_fix == 0.
*/
/** Select from where to start a scan. If we have scanned
too deep into the LRU list it resets the value to the tail
of the LRU list.
@return buf_page_t from where to start scan. */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
inline buf_page_t *LRUItr::start()
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_ad(mutex_own(m_mutex));
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
if (!m_hp || m_hp->old)
m_hp= UT_LIST_GET_LAST(buf_pool.LRU);
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
return m_hp;
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/** Functor to validate the LRU list. */
struct CheckInLRUList {
void operator()(const buf_page_t* elem) const
{
ut_a(elem->in_LRU_list);
}
static void validate()
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_list_validate(buf_pool.LRU, CheckInLRUList());
}
};
/** Functor to validate the LRU list. */
struct CheckInFreeList {
void operator()(const buf_page_t* elem) const
{
ut_a(elem->in_free_list);
}
static void validate()
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_list_validate(buf_pool.free, CheckInFreeList());
}
};
struct CheckUnzipLRUAndLRUList {
void operator()(const buf_block_t* elem) const
{
ut_a(elem->page.in_LRU_list);
ut_a(elem->in_unzip_LRU_list);
}
static void validate()
{
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
ut_list_validate(buf_pool.unzip_LRU,
CheckUnzipLRUAndLRUList());
}
};
#endif /* UNIV_DEBUG || defined UNIV_BUF_DEBUG */
#include "buf0buf.ic"
#endif /* !UNIV_INNOCHECKSUM */
#endif