mariadb/sql/compat56.cc

466 lines
12 KiB
C++
Raw Permalink Normal View History

/*
Copyright (c) 2004, 2012, Oracle and/or its affiliates.
Copyright (c) 2013, MariaDB Foundation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
2019-05-11 22:19:05 +03:00
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "compat56.h"
#include "myisampack.h"
#include "my_time.h"
2018-12-12 23:12:46 +02:00
static const int my_max_usec_value[7]
{
0,
900000,
990000,
999000,
999900,
999990,
999999
};
/*** MySQL56 TIME low-level memory and disk representation routines ***/
/*
In-memory format:
1 bit sign (Used for sign, when on disk)
1 bit unused (Reserved for wider hour range, e.g. for intervals)
10 bit hour (0-836)
6 bit minute (0-59)
6 bit second (0-59)
24 bits microseconds (0-999999)
Total: 48 bits = 6 bytes
Suhhhhhh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/
/**
Convert time value to MySQL56 numeric packed representation.
@param ltime The value to convert.
@return Numeric packed representation.
*/
longlong TIME_to_longlong_time_packed(const MYSQL_TIME *ltime)
{
MDEV-15176 Storing DATETIME-alike VARCHAR data into TIME produces wrong results When storing '0001-01-01 10:20:30x', execution went throw the last code branch in Field_time::store_TIME_with_warning(), around the test for (ltime->year || ltime->month). This then resulted into wrong results because: 1. Field_time::store_TIME() does not check YYYYMM against zero. It assumes that ltime->days and ltime->hours are already properly set. So it mixed days to hours, even when YYYYMM was not zero. 2. Field_time_hires::store_TIME() does not check YYYYMM against zero. It assumes that ltime->year, ltime->month, ltime->days and ltime->hours are already properly set. So it always mixed days and even months(!) and years(!) to hours, using pack_time(). This gave even worse results comparing to #2. 3. Field_timef::store_TIME() did not check the entire YYYYMM for being zero. It only checked MM, but did not check YYYY. In case of a zero MM, it mixed days to hours, even if YYYY was not zero. The wrong code was in TIME_to_longlong_time_packed(). In the new reduction Field_time::store_TIME_with_warning() is responsible to prepare the YYYYYMMDD part properly in all code branches (with trailing garbage like 'x' and without trailing garbage). It was reorganized into a more straightforward style. Field_time:store_TIME(), Field_time_hires::store_TIME() and TIME_to_longlong_time_packed() were fixed to do a DBUG_ASSERT on non-zero ltime->year or ltime->month. The code testing ltime->month was removed from TIME_to_longlong_time_packed(), as it's now properly done on the caller level. Truncation was moved from Field_timef::store_TIME() to Field_time::store_TIME_with_warning(). So now all thee methods Field_time*::store_TIME() assume a properly set input value: - Only zero ltime->year and ltime->month are allowed. - The value must be already properly truncated according to decimals() (this will help to add rounding soon, see MDEV-8894) A "const" qualifier was added to the argument of Field_time*::store_TIME().
2018-02-04 16:43:02 +04:00
DBUG_ASSERT(ltime->year == 0);
DBUG_ASSERT(ltime->month == 0);
// Mix days with hours: "1 00:10:10" -> "24:10:10"
MDEV-15176 Storing DATETIME-alike VARCHAR data into TIME produces wrong results When storing '0001-01-01 10:20:30x', execution went throw the last code branch in Field_time::store_TIME_with_warning(), around the test for (ltime->year || ltime->month). This then resulted into wrong results because: 1. Field_time::store_TIME() does not check YYYYMM against zero. It assumes that ltime->days and ltime->hours are already properly set. So it mixed days to hours, even when YYYYMM was not zero. 2. Field_time_hires::store_TIME() does not check YYYYMM against zero. It assumes that ltime->year, ltime->month, ltime->days and ltime->hours are already properly set. So it always mixed days and even months(!) and years(!) to hours, using pack_time(). This gave even worse results comparing to #2. 3. Field_timef::store_TIME() did not check the entire YYYYMM for being zero. It only checked MM, but did not check YYYY. In case of a zero MM, it mixed days to hours, even if YYYY was not zero. The wrong code was in TIME_to_longlong_time_packed(). In the new reduction Field_time::store_TIME_with_warning() is responsible to prepare the YYYYYMMDD part properly in all code branches (with trailing garbage like 'x' and without trailing garbage). It was reorganized into a more straightforward style. Field_time:store_TIME(), Field_time_hires::store_TIME() and TIME_to_longlong_time_packed() were fixed to do a DBUG_ASSERT on non-zero ltime->year or ltime->month. The code testing ltime->month was removed from TIME_to_longlong_time_packed(), as it's now properly done on the caller level. Truncation was moved from Field_timef::store_TIME() to Field_time::store_TIME_with_warning(). So now all thee methods Field_time*::store_TIME() assume a properly set input value: - Only zero ltime->year and ltime->month are allowed. - The value must be already properly truncated according to decimals() (this will help to add rounding soon, see MDEV-8894) A "const" qualifier was added to the argument of Field_time*::store_TIME().
2018-02-04 16:43:02 +04:00
long hms= ((ltime->day * 24 + ltime->hour) << 12) |
(ltime->minute << 6) | ltime->second;
longlong tmp= MY_PACKED_TIME_MAKE(hms, ltime->second_part);
return ltime->neg ? -tmp : tmp;
}
/**
Convert MySQL56 time packed numeric representation to time.
@param OUT ltime The MYSQL_TIME variable to set.
@param tmp The packed numeric representation.
*/
void TIME_from_longlong_time_packed(MYSQL_TIME *ltime, longlong tmp)
{
long hms;
if ((ltime->neg= (tmp < 0)))
tmp= -tmp;
hms= (long) MY_PACKED_TIME_GET_INT_PART(tmp);
ltime->year= (uint) 0;
ltime->month= (uint) 0;
ltime->day= (uint) 0;
ltime->hour= (uint) (hms >> 12) % (1 << 10); /* 10 bits starting at 12th */
ltime->minute= (uint) (hms >> 6) % (1 << 6); /* 6 bits starting at 6th */
ltime->second= (uint) hms % (1 << 6); /* 6 bits starting at 0th */
ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
ltime->time_type= MYSQL_TIMESTAMP_TIME;
}
/**
Calculate binary size of MySQL56 packed numeric time representation.
@param dec Precision.
*/
uint my_time_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 3 + (dec + 1) / 2;
}
/*
On disk we convert from signed representation to unsigned
representation using TIMEF_OFS, so all values become binary comparable.
*/
#define TIMEF_OFS 0x800000000000LL
#define TIMEF_INT_OFS 0x800000LL
/**
Convert MySQL56 in-memory numeric time representation to on-disk representation
@param nr Value in packed numeric time format.
@param OUT ptr The buffer to put value at.
@param dec Precision.
*/
void my_time_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* Make sure the stored value was previously properly rounded or truncated */
DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
switch (dec)
{
case 0:
default:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
break;
case 1:
case 2:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
ptr[3]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
break;
case 4:
case 3:
mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
mi_int2store(ptr + 3, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
break;
case 5:
case 6:
mi_int6store(ptr, nr + TIMEF_OFS);
break;
}
}
/**
Convert MySQL56 on-disk time representation to in-memory packed numeric
representation.
@param ptr The pointer to read the value at.
@param dec Precision.
@return Packed numeric time representation.
*/
longlong my_time_packed_from_binary(const uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
switch (dec)
{
case 0:
default:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
return MY_PACKED_TIME_MAKE_INT(intpart);
}
case 1:
case 2:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
int frac= (uint) ptr[3];
if (intpart < 0 && frac)
{
/*
Negative values are stored with reverse fractional part order,
for binary sort compatibility.
Disk value intpart frac Time value Memory value
800000.00 0 0 00:00:00.00 0000000000.000000
7FFFFF.FF -1 255 -00:00:00.01 FFFFFFFFFF.FFD8F0
7FFFFF.9D -1 99 -00:00:00.99 FFFFFFFFFF.F0E4D0
7FFFFF.00 -1 0 -00:00:01.00 FFFFFFFFFF.000000
7FFFFE.FF -1 255 -00:00:01.01 FFFFFFFFFE.FFD8F0
7FFFFE.F6 -2 246 -00:00:01.10 FFFFFFFFFE.FE7960
Formula to convert fractional part from disk format
(now stored in "frac" variable) to absolute value: "0x100 - frac".
To reconstruct in-memory value, we shift
to the next integer value and then substruct fractional part.
*/
intpart++; /* Shift to the next integer value */
frac-= 0x100; /* -(0x100 - frac) */
}
return MY_PACKED_TIME_MAKE(intpart, frac * 10000);
}
case 3:
case 4:
{
longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
int frac= mi_uint2korr(ptr + 3);
if (intpart < 0 && frac)
{
/*
Fix reverse fractional part order: "0x10000 - frac".
See comments for FSP=1 and FSP=2 above.
*/
intpart++; /* Shift to the next integer value */
frac-= 0x10000; /* -(0x10000-frac) */
}
return MY_PACKED_TIME_MAKE(intpart, frac * 100);
}
case 5:
case 6:
return ((longlong) mi_uint6korr(ptr)) - TIMEF_OFS;
}
}
/*** MySQL56 DATETIME low-level memory and disk representation routines ***/
/*
1 bit sign (used when on disk)
17 bits year*13+month (year 0-9999, month 0-12)
5 bits day (0-31)
5 bits hour (0-23)
6 bits minute (0-59)
6 bits second (0-59)
24 bits microseconds (0-999999)
Total: 64 bits = 8 bytes
SYYYYYYY.YYYYYYYY.YYdddddh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/
/**
Convert datetime to MySQL56 packed numeric datetime representation.
@param ltime The value to convert.
@return Packed numeric representation of ltime.
*/
longlong TIME_to_longlong_datetime_packed(const MYSQL_TIME *ltime)
{
longlong ymd= ((ltime->year * 13 + ltime->month) << 5) | ltime->day;
longlong hms= (ltime->hour << 12) | (ltime->minute << 6) | ltime->second;
longlong tmp= MY_PACKED_TIME_MAKE(((ymd << 17) | hms), ltime->second_part);
DBUG_ASSERT(!check_datetime_range(ltime)); /* Make sure no overflow */
return ltime->neg ? -tmp : tmp;
}
/**
Convert MySQL56 packed numeric datetime representation to MYSQL_TIME.
@param OUT ltime The datetime variable to convert to.
@param tmp The packed numeric datetime value.
*/
void TIME_from_longlong_datetime_packed(MYSQL_TIME *ltime, longlong tmp)
{
longlong ymd, hms;
longlong ymdhms, ym;
DBUG_ASSERT(tmp != LONGLONG_MIN);
if ((ltime->neg= (tmp < 0)))
tmp= -tmp;
ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
ymdhms= MY_PACKED_TIME_GET_INT_PART(tmp);
ymd= ymdhms >> 17;
ym= ymd >> 5;
hms= ymdhms % (1 << 17);
ltime->day= ymd % (1 << 5);
ltime->month= ym % 13;
ltime->year= (uint) (ym / 13);
ltime->second= hms % (1 << 6);
ltime->minute= (hms >> 6) % (1 << 6);
ltime->hour= (uint) (hms >> 12);
ltime->time_type= MYSQL_TIMESTAMP_DATETIME;
}
/**
Calculate binary size of MySQL56 packed datetime representation.
@param dec Precision.
*/
uint my_datetime_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 5 + (dec + 1) / 2;
}
/*
On disk we store as unsigned number with DATETIMEF_INT_OFS offset,
2020-07-14 00:42:47 +02:00
for HA_KETYPE_BINARY compatibility purposes.
*/
#define DATETIMEF_INT_OFS 0x8000000000LL
/**
Convert MySQL56 on-disk datetime representation
to in-memory packed numeric representation.
@param ptr The pointer to read value at.
@param dec Precision.
@return In-memory packed numeric datetime representation.
*/
longlong my_datetime_packed_from_binary(const uchar *ptr, uint dec)
{
longlong intpart= mi_uint5korr(ptr) - DATETIMEF_INT_OFS;
int frac;
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
switch (dec)
{
case 0:
default:
return MY_PACKED_TIME_MAKE_INT(intpart);
case 1:
case 2:
frac= ((int) (signed char) ptr[5]) * 10000;
break;
case 3:
case 4:
frac= mi_sint2korr(ptr + 5) * 100;
break;
case 5:
case 6:
frac= mi_sint3korr(ptr + 5);
break;
}
return MY_PACKED_TIME_MAKE(intpart, frac);
}
/**
Store MySQL56 in-memory numeric packed datetime representation to disk.
@param nr In-memory numeric packed datetime representation.
@param OUT ptr The pointer to store at.
@param dec Precision, 1-6.
*/
void my_datetime_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* The value being stored must have been properly rounded or truncated */
DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
mi_int5store(ptr, MY_PACKED_TIME_GET_INT_PART(nr) + DATETIMEF_INT_OFS);
switch (dec)
{
case 0:
default:
break;
case 1:
case 2:
ptr[5]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
break;
case 3:
case 4:
mi_int2store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
break;
case 5:
case 6:
mi_int3store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr));
}
}
/*** MySQL56 TIMESTAMP low-level memory and disk representation routines ***/
/**
Calculate on-disk size of a timestamp value.
@param dec Precision.
*/
uint my_timestamp_binary_length(uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
return 4 + (dec + 1) / 2;
}
/**
Convert MySQL56 binary timestamp representation to in-memory representation.
@param OUT tm The variable to convert to.
@param ptr The pointer to read the value from.
@param dec Precision.
*/
void my_timestamp_from_binary(struct timeval *tm, const uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
tm->tv_sec= mi_uint4korr(ptr);
switch (dec)
{
case 0:
default:
tm->tv_usec= 0;
return;
case 1:
case 2:
tm->tv_usec= ((int) ptr[4]) * 10000;
break;
case 3:
case 4:
tm->tv_usec= (uint) mi_uint2korr(ptr + 4) * 100;
break;
case 5:
case 6:
tm->tv_usec= (uint) mi_uint3korr(ptr + 4);
}
// The binary data my be corrupt. Cut fractional seconds to the valid range.
set_if_smaller(tm->tv_usec, my_max_usec_value[dec]);
}
/**
Convert MySQL56 in-memory timestamp representation to on-disk representation.
@param tm The value to convert.
@param OUT ptr The pointer to store the value to.
@param dec Precision.
*/
void my_timestamp_to_binary(const struct timeval *tm, uchar *ptr, uint dec)
{
DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
/* Stored value must have been previously properly rounded or truncated */
DBUG_ASSERT((tm->tv_usec %
(int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
mi_int4store(ptr, tm->tv_sec);
switch (dec)
{
case 0:
default:
break;
case 1:
case 2:
ptr[4]= (unsigned char) (char) (tm->tv_usec / 10000);
break;
case 3:
case 4:
mi_int2store(ptr + 4, tm->tv_usec / 100);
break;
/* Impossible second precision. Fall through */
case 5:
case 6:
mi_int3store(ptr + 4, tm->tv_usec);
}
}
/****************************************/