Data Binding Unleashed for
Composite Applications

Raymond Feng

Luciano Resende

Apache Tuscany & Nuvem committer

Agenda

Introduction

— Data binding

— SCA Composite application
— Apache Tuscany project

Data bindings in a composite application
Tuscany data binding framework

Extending Tuscany data binding framework

Introduction

Understanding the concepts: Data binding and
SCA composite application

What's a data binding?

A data binding (in this talk) denotes how business data are
represented in memory as Java objects.
* For example, we can represent a customer as:
— JavaBean (customer.Customer)
— JAXB (customer.Customer) D
— SDO (DataObject or customer.Customer)
— StAX XMLStreamReader JavaBean 1 D

Customer

— DOM Node (org.w3c.dom.Node) Id

— XML String/byte[]/InputStream * "fjrittNNZTfe
— JSON String/byte[]/InputStream

— org.json.JSONObiject [}

 The same information with different representations

SCA composite application

* SCA (Service Component Architecture, being standardized at
OASIS)

— Composite (a collection of collaborating components)

* Component (encapsulation of reusable business logic)
— Implementation (the code/script)
— Service (the function it provides)
» Interface
» Binding (how is the service exposed)
— Reference (the function it consumes)
» Interface
» Binding (how is the service accessed)

Customer

What is Apache Tuscany?

* Apache Tuscany (http://tuscany.apache.org) implements Service
Component Architecture (SCA) standard. With SCA as it's foundation,
Tuscany offers solution developers the following advantages:

Provides a model for creating composite applications by defining the
services in the fabric and their relationships with one another. The
services can be implemented in any technology.

Enables service developers to create reusable services that only
contain business logic. Protocols are pushed out of business logic and
are handled through pluggable bindings. This lowers development
cost.

Applications can easily adapt to infrastructure changes without
recoding since protocols are handled via pluggable bindings and
quality of services (transaction, security) are handled declaratively.

Existing applications can work with new SCA compositions. This allows
for incremental growth towards a more flexible architecture,
outsourcing or providing services to others.

Data bindings in a composite
application
Modeling, representing and flowing data
dCross components and protocols

A simple scenario

Two SCA components: Payment and CreditCardPayment

(Payment calls CreditCardPayment to authorize credit card
charges)

Two developers: Bob and Mary

Payment communicates with CreditCardPayment using SOAP/
HTTP web service

The Payment component will be exposed as a JSON-RPC
service

-

Customer

SOAP/HTTP
(XML)

Bob Mary

The SCA composite file

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912”

xmlns:tuscany="http://tuscany.apache.org/xmins/sca/1.1"
targetNamespace="http://tuscanyscatours.com/" name="Store”>

<component name="Payment">
<implementation.java class="com.tuscanyscatours.payment.impl.Paymentimpl" />
<service name="Payment">
<tuscany:binding.jsonrpc uri="http://localhost:8080/Payment" />
</service>
<reference name="creditCardPayment">
<binding.ws uri="http://localhost:8080/CreditCardPayment" />
</reference>
</component>

<component name="CreditCardPayment">
<implementation.java class="com.tuscanyscatours.payment.creditcard.impl.CreditCardPaymentimpl" />
<service name="CreditCardPayment">

<binding.ws uri="http://localhost:8080/CreditCardPayment" />
</service>

</component>

</composite>

Interface and data modeling

 Bob and Mary first agree on what data needs to
be exchanged between the two components

 The agreement is then described as an interface
(which in turn references the data types)

— The interface becomes the key contract between the
SCA reference and service that are wired together

— The interfaces can be described using different IDLs
such as WSDL (w/ XSD) or Java interface

— Interface compatibility
* Things to consider: efficiency, simplicity,
remotablity and interoperability.

Sample interfaces

JAX-WS w/ JAXB (annotations omitted...):

public interface CreditCardPayment {
String authorize(JAXBCreditCardDetailsType creditCard, float amount);

SDO:

public interface CreditCardPayment {
String authorize(SDOCreditCardDetailsType creditCard, float amount);

How are data represented in a
composite application?

e Component implementations
— Business logic needs to consume/produce data in a
representation it supports
* Handling incoming service calls
e Calling other services
* Receiving property values
— Certain implementation containers impose the data
representations (such as DOM for Apache ODE BPEL)

* Protocol stacks behind the bindings

— Protocol stacks need to marshal/unmarshal data

* Internal data representation
* Wire format (XML, JSON, binary, etc)

Data representations between two
components at runtime

Component Component

reference Wire format: service
data SOAP Message data
representation: with XML payload representation:
JAXB objects conforming to the SDO objects

WSDL/XSD

SOAP/HTTP
(XML)
(" Binding protocol Binding protocol
stack stack
data data
representation: representation:
Axis2 AXIOM Axis2 AXIOM

_ objects J " objects J

The reality check

* Enforcing one data binding is not flexible or even not feasible

— Components can be implemented using different technologies which could

impose the data binding requirements, for example, a BEPL engine may
require DOM

— Components may choose to use different data bindings to represent the

business data (input/output/fault), for example, JAXB vs. SDO for the XML
manipulations.

e Service providers or consumers are decoupled and it is
impossible to have a fixed data binding

— A service can serve different consumers that can only handle certain data
bindings natively

— The service providers for a given consumer can be replaced

 The same service can be accessed over different protocols
with different data bindings

Data transformation

e Data transformations are required to get two
components talk to each other

* Having application code to deal with technological
data transformation is a nightmare and it will defeat
the whole purpose and promise of SCA

JAXB < AXIOM AXIOM « SDO

SOAP/HTTP
(XML)

/
L

HI] binding.v/

Tuscany’s data binding framework

Introspect/transform data without application
coding

What does the framework need to
figure out?

* Understand the data binding requirements at
different places for the data flow

* Transform the data from one data binding to
the other transparently without the
interventions from the application developers

* Separate the data transformation/marshaling/
unmarshaling from the business logic

Data type introspection

* Marker interface
— commonj.sdo.DataObject, org.w3c.dom.Node

* Annotations
— JAXB annotations

 What information is captured?
— Java class

— Java generic type
— Logic type (XML element/type, Mime types, etc)

The magic behind the scenes

g>

Transformation paths

* Types of transformations
— Unmarshal/Deserialize (InputStream = Object)
— Marshal/Serialize (Object = OutputStream)
— Convert/Transform (Object = Object)

* Direct vs. Multi-hops
— JAXB <> DOM
— JAXB €< DOM <—> SDO
— Weight of a transformation
* Private vs. Public

— Some data bindings are not good as intermediaries
(data round-trip issues)

The complete data flow

Customer data come in JSON from HTTP requests

The JSON data is unmarshaled into JAXB for the Payment code
to consume

Payment passes CreditCard (JAXB) to the reference binding
layer which in turn converts JAXB into AXIOM

The service binding layer unmarshals the XML data into
AXIOM and transform it into SDO for the CreditCardPayment

The response path is reverse for the data transformations

JSON — JAXB JAXB — AXIOM AXIOM — SDO

SOAP/HTTP

binding jsonrpc

EL il

(XML)

Data bindings out of the box

DOM

JAXB (JavaBeans are treated as JAXB)
SDO

JSON

StAX

Data bindings for RESTful services
Integrating with JAX-RS entity providers

JAX-RS entity providers

* Entity providers supply mapping services
between representations and their associated
Java types.

e Entity providers come in two flavors:
— MessageBodyReader
— MessageBodyWriter

Tuscany’s generic entity providers
based on the data binding framework

Tuscany data binding framework

JAX-RS runtime
(such as Apache Wink)

Entity Providers

L

Message Message
Reader Writer
Entity

(JAXB, SDO,
[InputStream

DOM, etc)

OutputStream]

Extending the data binding

framework
Support your favorite data bindings

The DataBinding SPI

public interface DataBinding {
String getName();

boolean introspect(DataType dataType, Operation operation);

DataType introspect(Object value, Operation operation);

WrapperHandler getWrapperHandler();

Object copy(Object object, DataType sourceDataType, DataType targetDataType,
Operation sourceOperation, Operation targetOperation);

XMLTypeHelper getXMLTypeHelper();

}

The Transformer SPI

public interface PullTransformer<S, R> extends
Transformer {

R transform(S source, TransformationContext context);

}

public interface PushTransformer<sS, R> extends
Transformer {

void transform(S source, R sink, TransformationContext
context);

)

Registering your data bindings/
transformers

META-INF/services/
org.apache.tuscany.sca.databinding.DataBinding
org.apache.tuscany.sca.databinding.xml.DOMDataBinding;name=org.w3c
.dom.Node
META-INF/services/

org.apache.tuscany.sca.databinding.PullTransformer

org.apache.tuscany.sca.databinding.xml.Node2XMLStreamReader;source=org.w3
c.dom.Node,target=javax.xml.stream.XMLStreamReader,weight=80

META-INF/services/
org.apache.tuscany.sca.databinding.PushTransformer

org.apache.tuscany.sca.databinding.xml.Node2QOutputStream;source=org
.w3c.dom.Node,target=java.io.OutputStream,weight=80

Q&A

Find more details from:

Chapter 9 of Tuscany In SCA Action
http://www.manning.com/laws/

Save 40% at manning.com.
Enter “javaone2010” in the promotional code box at
check out.

