
Slide 1

Extending Tuscany

Raymond Feng
rfeng@apache.org
Apache Tuscany committer

Slide 2

Contents

 What can be extended?
 How to add an extension module?
 How to add an implementation type?
 How to add a binding type?
 How to add a interface type?
 How to add a data binding type?

Slide 3

What can be extended?

 The SCA assembly model can be extended with
support for new interface types, implementation
types. and binding types. Tuscany is architected for
extensibilities including:
 Implementation types
 Binding types
 Data binding types
 Interface types

Slide 4

Add an extension module

The Tuscany runtime allows extension
modules to be plugged in. Tuscany core
and extension modules can also define
extension points where extensions can
be added.

Slide 5

Life cycle of an extension module

 During bootstrapping, the following sequence will happen:
 All the module activators will be discovered by the presence of a file named as

META-INF/services/org.apache.tuscany.sca.core.ModuleActivator.
 The activator class is instantiated using the no-arg constructor.
 ModuleActivator.start(ExtensionRegistry) is invoked for all the modules. The

module can then get interested extension points and contribute extensions to
them. The contract bwteen the extension and extension point is private to the
extension point. The extension point can follow similar patterns such as Registry. If
it happens that one extension point has a
dependency on another extension point, they can linked at this phase.

 During shutting down, the stop() method is invoked for all
the modules to perform cleanups. A module can choose to
unregister the extension from the extension points.

Slide 6

Add an extension module
 Implement the org.apache.tuscany.core.ModuleActivator

interface. The implementation class must have a no-arg
constructor. The same instance will be used to invoke all
the methods during different phases of the module
activation.

 Create a plain text file named as META-
INF/services/org.apache.tuscany.core.ModuleActivator.

 List the implementation class name of the
ModuleActivator in the file. One line per class.

 Add the module jar to the classpath (or whatever
appropriate for the hosting environment).

Slide 7

Add an implementation type

SCA allows you to choose from any one
of a wide range of implementation
types, such as Java, Scripting, BPEL or
C++, where each type represents a
specific implementation technology.

Slide 8

Add a new implementation type

 Define an interface/factory to represent
the metadata for the implementation

 Implement the StAXArtifactProcessor to
read/resolve/write the model

 Add the runtime logic by implementing
the ImplementionProvider
Factory/ImplementionProvider SPI

 Contribute an extension module

Slide 9

Define and process the model
 A component implementation requires some metadata

 The model typically consists of 4 parts
 The CRUDImplementation interface which extends

org.apache.tuscany.assembly.Implementation
 The CRUDImplementationFactory interface which defines

createImplementation() method
 The default implementation of CRUDImplementation
 The default implementation of CRUDImplementationFactory

 Provides an implementation of StAXArtifactProcessor to
read/write the model objects from/to XML
 CRUDImplementationProcessor (customized processor) or
 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor

Slide 10

Provide the invocation logic

 CRUDImplementationProvider implements the
ImplementationProvider interface

 Methods on ImplementationProvider SPI
 createInvoker(): Create an invokoer to invoke a

component with this implementation type
 start(): A method to be invoked when a component

with this implementation type is started. (We simply
print a message for the CRUD)

 stop(): A method to be invoked when a component
with this implementation type is stopped. (We simply
print a message for the CRUD)

Slide 11

Plug the implementation type into
Tuscany
 The extension module containing the CRUD

implementation type can be plugged into Tuscany
as follows:
 Register the StAX processor in META-

INF/services/org.apache.tuscany.sca.contribution.processor.StAXArtifactProcessor

 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor;qname=http://crud#im
plementation.crud,model=crud.CRUDImplementation,factory=crud.CRUDImplementationF
actory

 Register the model factory in META-
INF/services/crud.CRUDImplementationFactory

 Register the ImplementationProviderFactory in META-
INF/services/org.apache.tuscany.sca.provider.ImplementationProviderFactory

 Register the extension schema in META-
INF/services/org.apache.tuscany.sca.contribution.processor.ValidationSchema

Slide 12

Add a binding type

References use bindings to describe the
access mechanism used to call a service.
Services use bindings to describe the
access mechanism that clients have to
use to call the service.

Slide 13

Add a new binding
 Define an interface to represent the

metadata for the binding (model and
factory)

 Implement the StAXArtifactProcessor to
read/resolve/write the models

 Add the runtime logic by implementing
the BindingProviderFactory,
ReferenceBindingProvider,
ServiceBindingProvider SPIs

 Contribute an extension module to
Tuscany

Slide 14

Define and process the model
 A binding requires some metadata, for example,

<binding.echo>
 The model typically consists of 4 parts

 The EchoBinding interface which extends org.apache.tuscany.assembly.Binding
 The EchoBindingFactory interface which defines createEchoBinding() method
 The default implementation of EchoBinding (EchoBindingImpl)
 The default implementation of EchoBindingFactory (EchoBindingFactoryImpl)

 Provides an implementation of
StAXArtifactProcessor to read/write the model
objects from/to XML
 EchoBindingProcessor or
 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor

Slide 15

Provide the outbound invocation
logic
 Implement ReferenceBindingProvider

interface to provide invocation logic for
the given binding type
 EchoBindingProvider implements the

ReferenceBindingProvider interface
 Methods on ReferenceBindingProvider SPI

 createInvoker(): Create an invoker to invoke a
component with this binding type

getBindingInterfaceContract(): Get the interface
contract imposed by the binding protocol layer

Slide 16

Provide the inbound invocation logic

 Implement ServiceBindingProvider interface
to provide invocation logic for the given
binding type
 EchoBindingProvider implements the

ServiceBindingProvider interface
 Methods on ServiceBindingProvider SPI

getBindingInterfaceContract(): Get the interface
contract imposed by the binding protocol layer

Slide 17

Control the life cycle of bindings

 Methods on
ReferenceBindingProvider/ServiceBindingProvider SPI

start(): A method to be invoked when a
component reference/service with this
binding type is started. (We simply print a
message for the Echo reference)

stop(): A method to be invoked when a
component reference/service with this
binding type is stopped. (We simply print a
message for the Echo reference)

Slide 18

Plug the binding type into Tuscany

 The extension module containing the ECHO
binding type can be plugged into Tuscany as
follows:
 Register the StAX processor in META-

INF/services/org.apache.tuscany.sca.contribution.processor.StAXArtifactProcessor

 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor;qna
me=http://echo#binding.echo,model=echo.EchoBinding,factory=echo.
EchoBindingFactory

 Register the model factory in META-
INF/services/echo.EchoBindingFactory

 Register the ImplementationProviderFactory in META-
INF/services/org.apache.tuscany.sca.provider.BindingProviderFactory

 Register the extension schema in META-
INF/services/org.apache.tuscany.sca.contribution.processor.ValidationSchema

	Extending Tuscany
	Contents
	What can be extended?
	Add an extension module
	Life cycle of an extension module
	Add an extension module
	Add an implementation type
	Add a new implementation type
	Define and process the model
	Provide the invocation logic
	Plug the implementation type into Tuscany
	Add a binding type
	Add a new binding
	Slide 14
	Provide the outbound invocation logic
	Provide the inbound invocation logic
	Control the life cycle of bindings
	Plug the binding type into Tuscany

