Extending Tuscany by contributing a
new implementation/binding type

Raymond Feng, Jeremy Boynes

Abstract

The SCA specification defines an extension model which allows the assembly
model to be extended with support for new interface types, implementation
types and binding types. The Tuscany runtime is designed to provide such
extensibilities. In this tutorial, we will first discuss the key extensible aspects
in the architecture and then provide a step-by-step walk through to illustrate
how to contribute a new component implementation type using the JavaScript
as an example.

1. Overview

We wanted to make sure that Tuscany could be extended in simple but flexible
way. To that end, we based the extension model on the SCA Assembly Model
itself and allow extensions to be contributed as Module Fragments. Each
fragment contains an XML file containing part of an SCA assembly which can be
used to define components and wire them together. This guide assumes
familiarity with the SCA Assembly Model.

To separate extension code from application code, we introduced a "system"
implementation type for components. This "system" type supports Java
components in a way that is similar to the Java programming model from the
specification but with a few additional privileges that let them become part of the
runtime.

To extend Tuscany, you simply add system components into the assembly that
defines the runtime. This adds functionality, functionality that can be used to
support a new programming language for components, new ways of
communicating in and out of the system, new services that can be made
available to applications, anything really ...

In practice, there are a few well defined types of extension that people typically
want to add:

« New types of implementations for application components such as
JavaScript, BPEL and Spring

« New types of network transport such as HTTP and JMS
« New types of network protocol such as SOAP and JSONRPC
« New types of data binding such as SDO and JAXB

+ New services that can be provided to applications such as a database
connection pool

Many of these extensions need to integrate into the process that is used to
deploy application components. For example, when a user uses a new
implementation type in their assembly file, the extension that provides that new
implementation needs to be activated during deployment so that it can create the
component they defined.

More detailed information on the general deployment process can be found later
in this document, but in brief there are three touchpoints where extensions need
to interact with it:

- Contributing a component that can extract configuration information from
an XML stream

« Contributing a component that can build contexts that represent
application components

- Contributing a component that helps wire application compnents together

2. Configuration Model

Internally, Tuscany uses a configuration model to represent the complete
definition of an application that will be run. This model is loaded from various
persistent artifacts (such as XML files, other configuration files, annotated Java
classes, etc.) and used by the builders to create the actual runtime contexts that
comprise the running application.

The configuration model is based on the SCA assembly model with additions for
Tuscany-specific features and for each of the installed extensions. It should be
stressed that although there is a natural similarity to the XML data model defined
by the specification the configuration model is driven by the needs of the
Tuscany implementation and its extensions.

The model can be described by the following UML.:

The code for the core model is contained in the "model" module located at [_-_]
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/model and all model
object derive from the core AssemblyObject interface. We use interfaces to
describe most model items and provide a factory that can be used to create
instances; this is optional and it is possible (if not recommended) for extensions
to add to the model using simple JavaBeans.

For a full description of the model please see the JavaDoc. Some common
extension points in the model are:

- [lImplementation interface that defines the actual implementation that
should be used for a component. This would typically be extended by new
component implementation types to describe the physical implementation
that should be used (such as a Java class name or a script file).

- [Binding interface that defines a binding to be applied to an EntryPoint
or ExternalService. This would typically be extended by new transport or
protocol bindings to describe how invocations will be represented on the
wire (such as a web-service or IIOP call).

https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/model/src/main/java/org/apache/tuscany/model/assembly/Binding.java
https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/model/src/main/java/org/apache/tuscany/model/assembly/Implementation.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/model
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/model

3. Deployment Process

The SCA Assembly model provides a very flexible way for users to define the
structure of their applications. However, the specification is still in the process of
defining how these assemblies should be deployed to physical servers. Further
the Assembly specification itself is still developing.

In light of that, we have tried to develop a very flexible solution for deployment in
Tuscany that allows us to modularize the process and react to evolutionary (and
even revolutionary) changes in the assembly and deployment models. This
solution assumes that as an application is deployed its configuration goes
through three different forms:

1. Persistent artifacts that have been provided by the user. These may be
simple XML files, they may be bundles of code (e.g. in JAR or CAB files),
they may be values in some global configuration system. When a user
deploys an application, Tuscany needs to locate and load all these
different artifacts and assemble them together into a consistent and
complete desciption of what the user wants to run.

2. The complete model of the application created in memory. This is an
intermediate form created from the persistent artifacts which describes the
application - we call it the logical configuration model. It is designed to
consistently represent the application. This model is described in
ConfigurationModel.

3. A set of runtime contexts that actually run the application. These are
optimized and wired together in a way that maximises the performance of
the system. The emphasis is on short code paths that can be carefully
tested so that we increase the stability of a production server.

We call the process of gathering together the persistent artifacts and building the
logical configuration model "loading" as the primary activity is reading files,
parsing them and building a consistent view. We call the process of converting
the configuration model into runtime contexts "building" as the primary activity is
building and optimizing runtime structures from the description in the model.

We have tried to keep a very clear separation between the two activities. There
may be many ways in which persistent configuration information is stored and we
may well need to support several concurrently. For example, in a clustered
environment a management node may load the configuration from some central
location but each of the worker nodes may just copy the configuration from it. Or,

http://ExtendingTuscany.htm/#ConfigurationModel

users may want to configure the system in different ways, for example using
Groovy script instead of XML; we make use of this in our test environment by
constructing the model programatically as part of the test suite.

3.1 Loading Phase

The XML used for the SCA Assembly model is structurally quite simple but very
extensible; almost every element support extension elements and the
specification itself uses substitution groups to allow specific types of
implementation and binding to replace/extend key elements. Further, the model
itself makes reference to artifacts located outside the XML instance (such as
WSDL definitions, Java classes and other SCA artifacts like componentType
sidefiles) that are needed to build up the complete representation of an
application.

To handle this extensibility and the external artifacts, in Tuscany we have chose
to use a streaming approach to parsing based on the Java StAX framework.
Rather than load XML artifacts into objects using a data binding technology such
as SDO or JAXB, the loader framework provides a mechanism for extension to
register their willingness to parse any XML element. As the XML file is read,
elements are dispatched to registered loaders who can then handle the stream in
any way they choose. As part of processing the stream, they can also read any
associated artifacts especially those that may be needed later during the
configuration loading process (such as WSDL definitions).

SCDL
<?7xml

To partipate in the loading process, an extension should provide a component
that implements the [_IStAXElementloader interface and should register that
component with the framework's [_IStAXLoaderRegistry during initialization.

The players in the loading phase are captured in the following UML class

diagram.

= ava Classn
O Atomicimplementationimpl

& AtomicImplementationimpl ()

«Java Class»
@ JavaScriptimplementation

"o soriptFile ; String | [

o soript : String

o resourceloader : Resourceloader
|= ty’peHeIper 4 Ty’peHeIper -3

& JavaScriptimplementation ()

@ setfesourceLoader {)

@ getResourcel nader ()

@ getTypeHelper)

@ setTypeHelper ()

@ getScriptFie ()

@ setSoriptFile ()

@ getScript ()

@ setSoript ()

& JavascriptimplementationLoader ()

@ setRegistry ()
L load ()

“lise

= «Java Class»
Implementationfmpl

= componentType : ComporentType |

| & getComponentType [)

@ setComponentType ()
@ initialize ()

@ freeze ()

eaccent) augen

[l wLSER

Gl «dava Interfaces

€ Implementation

e getComponsht Type ()
@ setCompanentType ()

0]

al «Java Interfaces
& AtomicImplementation

<Java Class»
@ JavaScriptimplementationLoader
W IMPLEMEMTATION JS : QMarne
+ registry | StAXLoaderRegistry
o ¥miFactary ; ¥MLInputFactory
& JavaScriptimplementationLoader {)
% @ setRegistry ()
wjse»
<ase
«sex A .
Bl «lava Interface»
@ staxXLoaderRegistry

e reg\steanader (B
@ unregisterLoader)
@ lnad ()
@ getContext {)
asen !
: lsen
a(LISE»

A «lava Interface»

@ staxElementLoader Blvisen
[@lad ()
wLisE
B -
2] «Java Class»
(@ LoaderContext

: o resourceloader | Resourceloacler
@ LoaderContext ()
@ getResDurceLDader_()]

3.2 Building Phase

The builders are responsible to build runtime context from the model objects

to represent application components. Context is the runtime peer to the model
object.

The building phase can itself be subdivided into two phases:

% Context building, where the runtime context for each component
implementation is built. This allows component implementations to set up the
context for a component in isolation. The output is a "hairy" context containing

https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/core/src/main/java/org/apache/tuscany/core/loader/StAXLoaderRegistry.java
https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/core/src/main/java/org/apache/tuscany/core/loader/StAXElementLoader.java

the implementation of the component itself with a set of stubs (the hairs) that
need to be connected to other components.

BuilderRegistry .
(Keyed by Implementation class)

+« Wire building, where the wires that connect components are created. This
involves connecting the "hairs" from each isolated component to each other to
create a fully connected runtime. Wire builders are reponsible for finding the
most optimized connection between two components and for making sure all
the policies needed by the service contract are present.

CompositeContext

ey —

Atomic [Outbound Chain | Inbound Atomic

Qutbound Invocation Chain Inbound Invocation Chain

Request N Request
Handler Handler

Request N Request
Handler Handler

1oydsats

1oydsats

Jojdeaiay
1oydeaisi

Response || Response

Response | | Response
Handler Handler

Handler Handler

The players in the loading phase are captured in the following UML class
diagram.

b «Java Class» «Java Class»

O WirethuilderSupport (3 JavaScriptContextFactoryBuilder
¢ runtimeContext : RuntimeContext
¢ targetClass @ Class
@ setRuntimeContext [)

& CreateContextFactory ()

s

[
«Java Class» = “USB%Java Class» «Java Class»
© JavaScriptTargetwireBuilder @ ContextractoryBuitderSupport @ JavaScriptContextFactory
. | o scope : Scope
= Createlrvoker () @ buld [) o name : String
< createContextFactory () o targetProxyFactories | Map<TargetWireFactory:
o sourceProxyFactories : List<SourceWireFactory
o services ; Map<Class>
o properties : Map<Objects
o inwoker : RhinoScript

parentContext : CompositeContext
@ JawaScriptContextFactary ()

@ createContext ()

@ getScope ()

@ gethame ()

@ addProperty {)

ﬁuse» @ addTargetWireFactory ()

«LisEn

«LisEn]
@ getTargetWireFactory ()
@ getTargetwireFactories ()
@ addSourceWireFactary ()
@ addSourceWireFactaries ()
@ getSourceWireFactories ()
@ prepare ()
@ getCurrentContext ()
Blusen
wusen
wLse
] «Java Class» 5] «Java Interfacen B «Java Interfaces «Jawa Class»
(@ ComponentTargetInvoker €3 ContextFactoryBuilder € ContextFactory @ JavaScriptComponentContext
o serviceMame ; Qualifiediame I | o serices : Map<Class>
o esMame : String © buid () @ createContext () o rthinolrvaoker | RhinaScript
o method : Method o properties : Map=Object>
o container : ScopeContext o sourceProxyFactaries @ List=SourceiWireFactory:s
o targetProxyFactories | Map<TargetWireFactary >

cantext : AtomnicContext

& ComponentTargetinvoker {)
@, invokeTarget ()
 dolrwoke ()

@ isCacheable ()

@ irvoke)
@ setext () ® getinstance ()
@clone) @ getTargetinstance {)
= createServiceReferences ()
@ isEagerInit ()
@ isDestrovable ()
estart ()
@ stop {)

o
a

;o instance : Object

& JavaScriptComponentContext ()
@ getlnstance)

@init [)

@ destroy {)

Fledava Interfacen
€ TargetIinvoker

® invokeTarget ()
® isCacheable ()
® cone ()

4. Contribute a new component
implementation/binding type

In this section, we guide you through all the steps required to add a new
component implementation type to Tuscany. We’ll use the XML metadata files
and java code from the Tuscany Rhino container (JavaScript).

4.1 Define the SCDL extensions for your component implementation

As illustrated below, you’ll extend the base SCDL to provide the metadata
configuration for your new type. In the sample case, we have a new
implementation represented by the “implementation.js” element under
namespace “http://org.apache.tuscany/xmlns/js/0.9”.

<nmodul e xm ns=http://ww. osoa. or g/ xm ns/sca/ 0.9
xm ns:js="http://org. apache. tuscany/ xm ns/js/0.9"
nane="JavaScri pt Tests" >

<conponent name="Hel | oWr| dConmponent 1" >
<js:inplementation.js scriptFile="tests/HelloWrldlnpll.js"/>
</ conponent >

</ nodul e>

4.2 Create the model object to represent your extensibility
elements/types

[- lJavaScriptimplementation

public class JavaScriptl npl enentati on ext ends
At onmi cl nmpl enent ati onl npl {

private String scriptFile;

public JavaScriptl|npl ementation() {
super();

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/assembly/JavaScriptImplementation.java

public String getScriptFile() {
return scriptFile;
}

public void setScriptFile(String fn) {
scriptFile = fn;
}

4.3 Create a StAX loader to extract metadata from the XML stream
into the model object

Using the [_lJavaScript implementation type as an example, this would be
something like:

@cope(" MODULE")
public class JavaScri ptl npl enent ati onLoader i nplenents
St AXEl enent Loader <JavaScri pt | npl ement ati on> {
public static final QNane | MPLEMENTATI ON_JS = new
Nane("http://org. apache. tuscany/ xm ns/js/0.9", "inplenentation.js");

private St AXLoader Registry registry;

@\utowi re
public void setRegistry(St AXLoaderRegistry registry) {
this.registry = registry;

@nit(eager = true)
public void start() {
regi stry.regi sterLoader (1 MPLEMENTATI ON_JS, this);

@est r oy
public void stop() {
regi stry. unregi st erLoader (I MPLEMENTATI ON_JS, this);

In this example, an instance of this component would be included with the
extension. When the extension module starts, the component is initialized
immediately due to the presence of the e1nit (eager = true) annotation. In its

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/loader/JavaScriptImplementationLoader.java

init method, it registers itself with the loader registry as a loader for elements with
the QName <implementation.js> in the JavaScript extension's namespace.

As XML configuration files are being parsed, when the loader sees the registered
element it will call this component's load method to handle it. Continuing the
JavaScript example, we see:

public JavaScriptlnpl ementati on | oad(XMLSt r eanrReader reader
Resour ceLoader resourcelLoader) throws XM.StreanException
Confi gurati onLoadExcepti on {
String scriptFile = reader.getAttributeVal ue(null,

"scriptFile");
String style = reader.getAttributeval ue(null, "style");
String script = loadScript(scriptFile, resourcelLoader);

Conponent I nf o conponent Type = | oadConponent Type(scriptFile,
resour ceLoader);

JavaScri ptlnpl ementation jslnmpl =
factory. createJavaScri ptlnpl ementation();

j sl mpl . set Conponent | nf o(conponent Type) ;

jslnmpl.setScriptFile(scriptFile);

jslml.setStyle(style);

jslnpl.setScript(script);

j sl npl . set Resour ceLoader (resour ceLoader) ;

return jslnpl;

The load method is called positioned on the element to be handled
(<implementation.js>) so that all attributes and content can be handled. The
load method is responsible for parsing the XML stream and returning an
appropriate assemblyobject (in this case a JavaScriptimplementation). In this
example, the loader is using the stream directly but it could just as easily use the
data binding library of its choice. When the method returns, the reader should be
positioned on the matching element end event.

In this case, the JavaScript implementation needs to access two external
resources that are not part of the XML file. The source code for the script is
loaded in the loadScript() method and stored as a property in the configuration
model. Similarly the component definition is loaded from a . componentType
sidefile by the loadComponentType() method and also stored in the model. The
resulting tmplementation object is thereby complete and the builder can create
the final component without having to load external resources.

4.4 Contribute builders to construct your component context and
invocation chains

a) Define your own component context

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/cont
ainer.rhino/src/main/java/org/apache/tuscany/container/rhino/context/Java
ScriptComponentContext.java

public class JavaScri pt Component Cont ext extends Abstract Cont ext
i mpl enents At om cCont ext {

private Map<String, C ass> services;

private RhinoScript rhinolnvoker

private Map<String, Object> properties;

private List<SourceWreFactory> sourceProxyFactories;

private Map<String, Target WreFactory> targetProxyFactories;

private Object instance;

publ i c JavaScri pt Component Cont ext (Stri ng name, Map<String, C ass>
services, Map<String, Object> properties,

Li st <Sour ceW r eFact ory>

sour ceProxyFactories, Map<String, TargetWreFactory>

t arget ProxyFactori es, RhinoScript invoker) ({
super (nane) ;

assert (services !=null) : "No service interface mapping
speci fied";
assert (properties != null) : "No properties specified"

this.services = services;

this.properties = properti es;

t hi s. rhi nol nvoker = invoker;

t hi s. sourceProxyFactories = sourceProxyFactories;
this.target ProxyFactories = targetProxyFactories;

b) Provide the ContextFactory to produce your context

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/cont
ainer.rhino/src/main/java/org/apache/tuscany/container/rhino/context/Java

ScriptComponentContext.java

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/context/JavaScriptComponentContext.java

public class JavaScri pt Cont ext Factory inpl ements
Cont ext Fact or y<At om cCont ext >, Cont ext Resol ver {

private Scope scope
private String namne;

private Map<String, Target WreFactory> targetProxyFactories = new
HashMap<String, Target WreFactory>();

private List<SourceWreFactory> sourceProxyFactories = new
ArraylLi st <SourceW reFactory>();

private Map<String, C ass> services;
private Map<String, Object> properties;
private RhinoScript invoker

privat e ConpositeContext parentContext;

publ i c JavaScri pt Cont ext Factory(Stri ng name, Scope scope,

Map<String, C ass> services, Map<String, Object> properties,
Rhi noScri pt invoker) {

thi s. name = nane;

this. scope = scope

this.services = services;

this.properties = properti es;

this.invoker = invoker;

}

public Atom cContext createContext() throws
Cont ext Creat i onException {
return new JavaScri pt Conponent Cont ext (nanme, services,
properties, sourceProxyFactories, targetProxyFactories,
i nvoker. copy());
}

publ i c Scope get Scope() {
return scope
}

public String getNane() {
return name;
}

public void addProperty(String propertyNane, Cbject value) {
properties. put (propertyNanme, val ue);
}

public void addTarget WreFactory(String servi ceNane,
Target WreFactory factory) {
t ar get ProxyFact ori es. put (servi ceNane, factory);
}

public Target WreFactory get Target WreFactory(String servi ceNane)

return target ProxyFactories. get(serviceNane);

}

public Map<String, TargetWreFactory> get Target WreFactories() ({
return targetProxyFactori es;
}

public void addSourceWreFactory(String referenceNang,
SourceWreFactory factory) {
sour ceProxyFactori es. add(factory);
}

public void addSourceWreFactories(String referenceNanme, C ass
ref erencel nterface, List<SourceWreFactory> factories, bool ean
multiplicity) {
sour ceProxyFactories. addAl | (factories);
}

publ i c List<SourceWreFactory> get SourceWreFactories() {
return sourceProxyFactori es;
}

public void prepare(ConpositeContext parent) ({
par ent Cont ext = parent;
}

publ i c ConpositeContext getCurrentContext() {
return parent Cont ext;
}

c) Provide the ContextFactoryBuilder to create your ContextFactory

http://svn.apache.org/repos/asf/incubator/tuscany/java/scal/containers/container.r

hino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptContext
FactoryBuilder.java

public class JavaScri pt Cont ext Fact or yBui | der ext ends
Cont ext Fact or yBui | der Support <JavaScri pt | npl ement ati on> {

@verride

protected ContextFactory createContextFactory(String
conponent Nane, JavaScri ptlnpl enentati on jslnpl enentati on, Scope
scope) {

Map<String, C ass> services = new HashMap<String, C ass>();

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptContextFactoryBuilder.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptContextFactoryBuilder.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptContextFactoryBuilder.java

for (Service service
j sl mpl enent at i on. get Conponent Type() . get Servi ces()) {
servi ces. put (service. get Nanme(),
servi ce. get Servi ceContract (). getlnterface());

}

Map<String, Object> defaultProperties = new HashMap<Stri ng,
oj ect >();
for (org.apache.tuscany. nodel .assenbly. Property property :
j sl mpl enent ati on. get Corponent Type() . get Properties()) {
def aul t Properti es. put (property. get Name(),
property. get Def aul t Val ue());
}

String script = jslnplenentation.getScript();
Cl assLoader cl =
j sl mpl enent at i on. get Resour ceLoader (). get O assLoader () ;

Rhi noScri pt i nvoker;
if (isE4AXStyl e(conmponent Name,
j sl mpl enent ati on. get Corponent Type() . get Servi ces())) {
E4XDat aBi ndi ng dat aBi ndi ng =
cr eat eDat aBi ndi ng(j sl npl enent ati on);
i nvoker = new Rhi noE4XScri pt (conponent Nane, scri pt,
defaul t Properties, cl, dataBinding);
} else {
i nvoker = new Rhi noScri pt (conponent Nane, scri pt,
defaul t Properties, cl);

}

Map<String, Object> properties = new HashMap<Stri ng,
oj ect >();

JavaScri pt Cont ext Fact ory cont ext Factory = new
JavaScri pt Cont ext Fact or y(conponent Nane, scope, services, properties,
i nvoker) ;

return contextFactory;

d) Provide the WireBuilder to resolve and link the wires between the source
and target

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/cont
ainer.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaS

criptTargetWireBuilder.java

public class JavaScri pt Target Wr eBui | der ext ends
W r eBui | der Support <JavaScri pt Cont ext Fact ory> {

protected Targetlnvoker createl nvoker(QualifiedName target Nane,
Met hod operation, ScopeContext context, bool ean downScope) {

http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptTargetWireBuilder.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptTargetWireBuilder.java
http://svn.apache.org/repos/asf/incubator/tuscany/java/sca/containers/container.rhino/src/main/java/org/apache/tuscany/container/rhino/builder/JavaScriptTargetWireBuilder.java

return new Conponent Tar get | nvoker (t ar get Nane, operati on,
cont ext);

}
}

4.5 Register your extension as system components in the system
module fragment

To add the loader/builder to the Tuscany runtime configuration, a <component>
definition is added in a SCA Assembly file:

<nmodul eFragment xm ns="htt p://ww. osoa. or g/ xm ns/ sca/ 0. 9"
xm ns: v="http://ww. osoa. or g/ xm ns/ sca/ val ues/ 0. 9"

xm ns: tuscany="http://org. apache. tuscany/ xm ns/system 0. 9"
name="or g. apache. t uscany. cont ai ner. r hi no">

<I-- Context Fact oryBui | der -->
<conponent
name="or g. apache. t uscany. cont ai ner. r hi no. bui | der . JavaScr i pt Cont ext Fac
toryBui |l der" >

<tuscany:i npl ement ati on. system
cl ass="or g. apache. t uscany. cont ai ner . r hi no. bui | der. JavaScri pt Cont ext Fa
ctoryBuil der" />

</ conponent >

<!-- WreBuilder -->
<conponent
nane="or g. apache. t uscany. cont ai ner. r hi no. bui | der. JavaScri pt Target Wre
Bui | der" >

<tuscany:i npl enent ati on. system
cl ass="or g. apache. tuscany. cont ai ner. rhi no. bui | der. JavaScri pt Tar get Wr
eBui | der" />

</ conponent >

<l-- InplenmentationLoader -->
<component
nane="or g. apache. t uscany. cont ai ner. r hi no. | oader. JavaScri pt | npl enent at
i onLoader" >
<tuscany:inpl ement ati on. system
cl ass="org. apache. tuscany. cont ai ner. rhi no. | oader. JavaScri pt| npl enent a
ti onLoader" />
</ conponent >
</ nodul eFr agnment >

The extension is added to the system by including this fragment on the
classpath as a resource with the name system.fragment.

Summary

In a nutshell, to extend Tuscany by contributing new implementation/binding
types, you need to do the following things:

1. Define the SCDL extensibility element and corresponding model object

2. Contribute a StAX loader to load the XML configuration into the model
object

3. Contribute a context factory builder to build runtime context based on the
model

4. Contribute a wire builder to resolve and link wires for invocations

Disclaimer

This guide reflects the Tuscany M1 code level. The Tuscany extension model is
subject to changes as the runtime evolves. Please check the Tuscany web site
for the latest version.

	Extending Tuscany by contributing a new implementation/binding type
	Abstract
	1. Overview
	2. Configuration Model
	3. Deployment Process
	3.1 Loading Phase
	3.2 Building Phase

	4. Contribute a new component implementation/binding type
	4.1 Define the SCDL extensions for your component implementation
	4.2 Create the model object to represent your extensibility elements/types
	4.3 Create a StAX loader to extract metadata from the XML stream into the model object
	4.4 Contribute builders to construct your component context and invocation chains
	4.5 Register your extension as system components in the system module fragment

	Summary
	Disclaimer

