
Apache Tuscany: Not the Same Old Architecture

Jim Marino
BEA Systems, Office of the CTO

Jeremy Boynes
IBM Corporation, Gluecode CTO

Agenda

• What is Apache Tuscany?
• The Problem Domain
• A New Architecture: The Service Network

• Tuscany Technical Overview
• Where We Are Going

2

Agenda

• What is Apache Tuscany?
• The Problem Domain
• A New Architecture: The Service Network

• Tuscany Technical Overview
• Where We Are Going

3

What is Apache Tuscany?

• An open source project in incubation at Apache that provides
infrastructure for building service-oriented applications
• http://incubator.apache.org/tuscany/index.html

• Independent technologies designed to work well together based on
• Service Component Architecture (SCA) for assembling service networks
• Service Data Objects (SDO) for representing and tracking data as it flows

across a service network
• A Data Access Service (DAS) for declarative data access

• Multi-language
• SCA and SDO have Java and C++ implementations

• Today we will talk about Java SCA…
• When we refer to “Tuscany” we really mean “The Apache Tuscany Java

SCA project”
4

http://incubator.apache.org/tuscany/index.html
http://incubator.apache.org/tuscany/index.html

The Problem Domain

• Apache Tuscany is trying to solve the problem of how to construct and
tie together, or assemble, services.

• A service is a unit of code that performs some function
• May be addressed by a client locally or remotely
• Offers a contract

• Services may be assembled in a heterogeneous environment
• May be deployed across different runtimes

• e.g. J2EE server, J2SE client, Servlet container, OSGi container, etc.

• May be written in different languages

5

Isn’t This Just Web Services?

• No…
• Web Services define wire-level formats and protocols for interoperability
• Tuscany operates at a higher level by separating application code from

these lower-level concerns
• Tuscany may use web services technologies but is not bound to them

• Another way to think about this is that while WSDL describes a
service contract, it does not do much to describe the relationships
between services

Tuscany

RMIWS-* Other

6

For Example…

• The implementation of a simple Java calculator component
public class CalculatorImpl implements Calculator{
	

	

 private AddService addService;
	

	

 public void setAddService(AddService service){
	

 	

 addService = service;
	

 }
	

	

 public float add(float operand1, float operand2){
	

 	

 return addService.add(operand1, operand2);
	

 }
}

• Configuring the service

<component name=“Calculator”>
	

 <implementation.java class=“foo.CalculatorImpl”/>
	

 <reference name=“addService”>AddService</reference>
</component>

Services are POJOs, contracts can
be defined with Java (or WSDL)

Components interact with services
provided by other components
through contracts and do not need
to mess with transport protocols or
location APIs. A component is said
to have a reference to another
service

Service references are wired to
targets, typically other services over
a binding (protocol and transport
such as SOAP/HTTP). The runtime
is responsible for handling the
mechanics of this, even potentially
selecting the binding.

7

What We are Trying To Do

• Provide infrastructure that enables next-generation applications

• Infrastructure today suffers from
• Complexity in development and configuration, particularly as this scales

to SOAs
• Lack of dynamicity,

• e.g ability to re-wire target destinations

• Focus on code reusability but not on access to services
• Difficulty coping with heterogeneity

• Services are deployed to multiple runtime types in multiple languages

• Difficulty provisioning through gracefully scaling up and scaling down
• Services may not need or be able to have an entire J2EE environment

• This requires a new type of architecture…

8

An Existing (Strawman) Architecture

Business Logic Container

Data Tier

UI Tier

P
ro

to
co

l/
Tr

an
sp

or
t A

P
Is

Business Logic Container

Data Tier

UI Tier

P
ro

to
co

l/
Tr

an
sp

or
t A

P
Is

✦Complexity and lack of dynamicity

✦Does not scale to many services

9

The Service Network

Service Network

Data

Data

Data

UI Tier

In a Service Network, business
logic is contained in components.
They offer services and are wired
to other services. Wires may have
policies associated with them such
as “reliability”.

10

Tuscany

Tuscany and the Service Network

Service Network

1

2

3

4

Physical transport
(e.g. SOAP/HTTP, JMS, RMI, AMQP, etc.)

11

An invocation is
made to a service

A Tuscany binding is
responsible for
dispatching the
invocation to a transport
provider, e.g AMQP

The transport provider
flows the invocation

A Tuscany binding
receives the
invocation and
dispatches it to the
target service

A Simple Example

• The client component implementation
public class CalculatorImpl implements Calculator{
	

	

 private AddService addService;
	

	

 public void setAddService(AddService service){
	

 	

 addService = service;
	

 }
	

	

 public float add(float operand1, float operand2){
	

 	

 return addService.add(operand1, operand2);
	

 }
}

• Configuring the client component

<component name=“Calculator”>
	

 <implementation.java class=“foo.CalculatorImpl”/>
	

 <reference name=“addService”>AddService</reference>
</component>

<reference name=”AddService>
	

 <interface.java interface=“foo.AddService”/>
 <binding.sca/>
</reference>

...that’s it!

12

Heterogeneity

• AddService from the previous example could be written in a variety of
languages and deployed in the network on a variety of runtimes

Tuscany

J2EE cluster

Tomcat instance

OSGi container

13

Service Networks are Small and Large

• Large enterprise servers to small-footprint devices
• Services are both local and remote

• The code (implementation/interface) within a single-VM application is
also a service network

• Service networks are recursive: components may contain other
components

• The service network is itself a component
14

Service Component Architecture

• Tuscany is based on SCA
• SCA provides

• A way to represent a service network, termed an assembly
• A model for constructing components in a variety of languages including

Java, C++ and BPEL
• Also defines integration with existing programming models including Spring

and EJB

• A model for associating policies with services
• Tuscany provides innovation and real-world experience to SCA
• A bit of trivia: there is no such thing as a “Service Component” :-)

15

How Is This Different Than J2EE?

• Provides a representation of service networks
• Allows multiple implementation languages

• e.g. BPEL, PHP, C++, proprietary ESB proxies
• Is better at abstracting communication technology

• J2EE developer must decide whether creating
• a web service (@WebService)
• a stateless EJB (@Stateless)
• a message driven bean (@MessageDriven)

• SCA allows someone to decide later
• It can be very lightweight
• However, the two are complimentary in many areas

• Tuscany can be deployed on J2EE servers
• EJB and JAX-WS are defined as a component implementation types

by SCA (not yet implemented in Tuscany)
• Tuscany can use a variety of J2EE technologies

• e.g., Servlets, JSP, JMS, JAXB
16

How Is This Different Than Spring?

• Spring focuses on (mostly) local, by-reference wiring
• The Tuscany (SCA) programming model is centered on SOA

• Non-blocking/asynchronous invocations
• Service contracts may be bi-directional, i.e. callbacks
• Conversational state is managed by the runtime

• Tuscany also integrates with Spring
• Spring can be used to wire local beans that are then wired by Tuscany to

remote services
• A Spring application context can be a component implementation type

17

How Is This Different Than JBI?

• JBI standardizes an SPI for middleware suppliers
• Tuscany also has an extension model but is primarily for service

developers and service assemblers
• JBI is based on the concept of a Normalized Message Router (NMR)
• Tuscany uses a point-to-point wiring model, similar to a “service

switch,” with changeable bindings
• JBI is (currently) single-VM
• Tuscany is (intended to be) multi-VM

18

Agenda

• What is Apache Tuscany?
• The Problem Domain
• A New Architecture: The Service Network

• Tuscany Technical Overview
• Where We Are Going

19

Tuscany is Based On

• A small footprint kernel
• Less than 4MB including dependencies
• Will hopefully be smaller

• That is highly extensible
• Extensions are contributed as SCA components
• The runtime bootstraps itself as a series of components

• And is deployable to a variety of host environments
• J2SE
• J2EE servers
• Servlet containers
• OSGi containers
• Standalone server

20

Design Goals

• Make things easy for users
• Support a non-invasive programming model
• Provide sensible defaults
• Automate configuration

• Limit the Kernel to ~30K lines of code
• Provide functionality through extensions
• Similar to Eclipse
• Allow capabilities to be “dynamically” added to the runtime

• Allow maximum choice
• For example, not tied to a particular databinding or web service

technology

21

The Tuscany Kernel Consists Of

• A single-VM wiring engine
• IoC-based (Inversion of Control)
• Popularized by frameworks such as Spring, ATG Dynamo, and

PicoContainer
• Infrastructure for managing components and component state
• A data mediation framework
• A framework for deploying policy and intents
• An extension framework
• Dependency management and provisioning

22

Kernel

Extension SPI

Wiring and
Connecting

Wiring and
Connecting

Component
Containers

Policy/
Intents

Data
Mediation

Dependency
Management

Tuscany Extensions

• Extensions are just components
• They therefore can be virtually anything someone can think of

• There are some common types
• Bindings

• Axis, Celtix, JMS, RMI

• Component Implementation Types
• Spring, JavaScript, Ruby

• DataBinding Frameworks
• SDO, JAXB, XmlBeans, Castor

• Miscellaneous
• JPA, OSGi

• We are always looking for more extensions...

23

Agenda

• What is Apache Tuscany?
• The Problem Domain
• A New Architecture: The Service Network

• Tuscany Technical Overview
• Where We Are Going

24

Where We Are Going

• It’s up to you!

25

A community of individuals working on things that
interest them drives many areas of innovation

Constituting the Service Network

• Use the Kernel to constitute service networks
• A Service Network is a component referred to as the SCA System, or

System for short
• Individual runtime instances boostrap a System through auto-discovery

26

Service Network/System

Kernel
Instance

1

Kernel
Instance

3

Kernel
Instance

2

Candidate Technologies for Service Discovery

• In the spirit of choice, discovery should be pluggable
• Must scale to 1,000s of nodes
• Zeroconf

• IETF standard developed by Apple
• Based on multi-cast and uni-cast DNS

• UPnP
• Jini

27

Service Networks (Systems) are Federated

• Tuscany may be deployed to a variety of host environments
• On some nodes, components may be managed by another container

and not directly by Tuscany, e.g. an EJB

28

Standalone Jetty/Tomcat

J2EE App Server Cluster

Deployment and Provisioning in the System

• Tuscany must be able to take an assembly (the SCA configuration) and
its associated artifacts and deploy them to the System

• The artifacts must be processed and mapped to particular runtimes,
where a provisioning agent handles the specific task of installing/
instantiating them

29

Assembly Deployment
Service

Provisioning
Service

Provisioning
Service

1

2

3

An Analogy

• The physical networking infrastructure is abstracted by a combination
of hardware and the OS

• Qualities of service (e.g. security) are specified independently of the
physical transport (although the latter may restrict the former at times)

• Things generally just work without the need to know specifics of the
physical networking topology

30

When I use my laptop to browse, I don’t care if it is connected over
Ethernet cable or wireless. I may want certain qualities of service or
security such as HTTPS and I specify that “declaratively” to my browser
by typing https://. Similarly, a target service (a web site) may require that
it be accessed in a secure manner and hence prohibit access using http://.

Intent-based Programming

• Tuscany is about abstracting services from the “physical” bindings
they communicate over

• Intent-based Programming takes this further by allowing service
developers and assemblers to declare requirements to the runtime such
as “confidentiality” or “reliability”
• These intents are mapped down to concrete policies

• Can be applied to (among other things)
• Services
• Bindings
• Provisioning
• Target/destination selection

31

Binding Intents

• Declare a set of requirements on a reference such as “confidentiality”
or “ordered delivery” and have Tuscany choose the appropriate
binding (e.g. web services, AMQP, JMS) based on the requirements of
the client and target

• Decouples services from underlying communications infrastructure
• Easier to develop and configure
• Provides runtime dynamicity based on changes in conditions. For

example, selecting a different binding as it comes online into a System

32

Target Selection Intents, a.k.a. Autowiring

• A client declares certain characteristics about the target of a reference
but does not wire directly to it by name
• e.g. Service contract, SLAs

• The runtime selects the appropriate target and performs the wiring
• Helpful when service networks increase in complexity and number of

services
• Provides a further level of decoupling

33

Thank You and Get Involved!

• We are always looking for contributions
• The best way to get involved is sign up to the the mailing list and start

asking questions

34

http://incubator.apache.org/tuscany/get-involved.html

http://incubator.apache.org/tuscany/get-involved.html
http://incubator.apache.org/tuscany/get-involved.html

