/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* $Rev$ $Date$ */ #ifndef tuscany_parallel_hpp #define tuscany_parallel_hpp /** * Simple parallel work execution functions. */ #include #ifdef WANT_THREADS #include #endif #include "function.hpp" #include "list.hpp" namespace tuscany { /** * Returns the current process id. */ unsigned long processId() { return (unsigned long)getpid(); } #ifdef WANT_THREADS /** * Returns the current thread id. */ unsigned long threadId() { return (unsigned long)pthread_self(); } /** * Represents a value which will be know in the future. */ template class future { private: template class futureValue { public: futureValue() : hasValue(false) { pthread_mutex_init(&valueMutex, NULL); pthread_cond_init(&valueCond, NULL); } futureValue(const futureValue& fv) : valueMutex(fv.valueMutex), valueCond(fv.valueCond), hasValue(fv.hasValue), value(fv.value) { } ~futureValue() { //pthread_mutex_destroy(&valueMutex); //pthread_cond_destroy(&valueCond); } bool set(const T& v) { pthread_mutex_lock(&valueMutex); if(hasValue) { pthread_mutex_unlock(&valueMutex); return false; } hasValue = true; value = v; pthread_mutex_unlock(&valueMutex); pthread_cond_broadcast(&valueCond); return true; } const T get() { pthread_mutex_lock(&valueMutex); while(!hasValue) { pthread_cond_wait(&valueCond, &valueMutex); } const T& v = value; pthread_mutex_unlock(&valueMutex); return v; } private: pthread_mutex_t valueMutex; pthread_cond_t valueCond; bool hasValue; X value; }; gc_ptr > fvalue; template friend const X get(const future& f); template friend bool set(const future& f, const X& v); public: future() : fvalue(new (gc_new >()) futureValue()) { } ~future() { } future(const future& f) : fvalue(f.fvalue) { } const future& operator=(const future& f) { if (&f == this) return *this; fvalue = f.fvalue; return *this; } const future& operator=(const T& v) const { fvalue->set(v); return *this; } operator const T() const { return fvalue->get(); } }; /** * A bounded thread safe queue. */ template class wqueue { public: wqueue(size_t max) : max(max), size(0), tail(0), head(0), values(new (gc_anew(max)) T[max]) { pthread_mutex_init(&mutex, NULL); pthread_cond_init(&full, NULL); pthread_cond_init(&empty, NULL); } wqueue(const wqueue& wq) : max(wq.max), size(wq.size), tail(wq.tail), head(wq.head), mutex(wq.mutex), full(wq.full), empty(wq.empty), values(wq.values) { } ~wqueue() { //pthread_mutex_destroy(&mutex); //pthread_cond_destroy(&full); //pthread_cond_destroy(&empty); } private: const size_t max; size_t size; size_t tail; size_t head; pthread_mutex_t mutex; pthread_cond_t full; pthread_cond_t empty; gc_ptr values; template friend const size_t enqueue(wqueue& q, const X& v); template friend const X dequeue(wqueue& q); }; /** * Adds an element to the tail of the queue. */ template const size_t enqueue(wqueue&q, const T& v) { pthread_mutex_lock(&q.mutex); while(q.size == q.max) pthread_cond_wait(&q.full, &q.mutex); q.values[q.tail] = v; q.tail = (q.tail + 1) % q.max; q.size++; pthread_mutex_unlock(&q.mutex); pthread_cond_broadcast(&q.empty); return q.size; } /** * Returns the element at the head of the queue. */ template const T dequeue(wqueue& q) { pthread_mutex_lock(&q.mutex); while(q.size == 0) pthread_cond_wait(&q.empty, &q.mutex); const T v = q.values[q.head]; q.head = (q.head + 1) % q.max; q.size--; pthread_mutex_unlock(&q.mutex); pthread_cond_broadcast(&q.full); return v; } /** * The worker thread function. */ void *workerThreadFunc(void *arg) { int ost; pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &ost); int ot; pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &ot); wqueue >* work = reinterpret_cast >*>(arg); while(dequeue(*work)()) ; return NULL; } /** * Returns a list of worker threads. */ const list workerThreads(wqueue >& wqueue, const size_t count) { if (count == 0) return list(); pthread_t thread; pthread_create(&thread, NULL, workerThreadFunc, &wqueue); return cons(thread, workerThreads(wqueue, count - 1)); } /** * A worker, implemented with a work queue and a pool of threads. */ class worker { private: // The worker holds a reference to a sharedWorker, to avoid non-thread-safe // copies of the queue and thread pool when a worker is copied class sharedWorker { public: sharedWorker(size_t max) : work(wqueue >(max)), threads(workerThreads(work, max)) { } wqueue > work; const list threads; }; public: worker(size_t max) : w(*(new (gc_new()) sharedWorker(max))) { } worker(const worker& wk) : w(wk.w) { } private: sharedWorker& w; template friend const future submit(worker& w, const lambda& func); friend const bool shutdown(worker& w); friend const bool cancel(worker& w); }; /** * Function used to wrap work submitted to a worker. */ template bool submitFunc(const lambda& func, const future& fut) { fut = func(); return true; } /** * Submits work to a worker. */ template const future submit(worker& w, const lambda& func) { const future fut; const lambda f = curry(lambda, future)>(submitFunc), func, fut); enqueue(w.w.work, f); return fut; } /** * Enqueues shutdown requests. */ const bool shutdownEnqueue(const list& threads, wqueue >& work) { if (isNil(threads)) return true; enqueue(work, result(false)); return shutdownEnqueue(cdr(threads), work); } /** * Waits for shut down threads to terminate. */ const bool shutdownJoin(const list& threads) { if (isNil(threads)) return true; pthread_join(car(threads), NULL); return shutdownJoin(cdr(threads)); } /** * Shutdown a worker. */ const bool shutdown(worker& w) { shutdownEnqueue(w.w.threads, w.w.work); shutdownJoin(w.w.threads); return true; } /** * Cancel a worker. */ const bool cancel(const list& threads) { if (isNil(threads)) return true; pthread_cancel(car(threads)); return cancel(cdr(threads)); } const bool cancel(worker& w) { cancel(w.w.threads); return true; } #else /** * Returns the current thread id. */ unsigned long threadId() { return 0; } #endif /** * Represents a per-thread value. */ template class perthread_ptr { public: perthread_ptr() : key(createkey()), owner(true), cl(lambda()>()), managed(false) { } perthread_ptr(const lambda()>& cl) : key(createkey()), owner(true), cl(cl), managed(true) { } ~perthread_ptr() { if (owner) deletekey(key); } perthread_ptr(const perthread_ptr& c) : key(c.key), owner(false), cl(c.cl), managed(c.managed) { } perthread_ptr& operator=(const perthread_ptr& r) throw() { if(this == &r) return *this; key = r.key; owner = false; cl = r.cl; managed = r.managed; return *this; } const perthread_ptr& operator=(const gc_ptr& v) { set(v); return *this; } const perthread_ptr& operator=(T* v) { set(v); return *this; } const bool operator==(const gc_ptr& r) const throw() { return get() == r; } const bool operator==(T* p) const throw() { return get() == p; } const bool operator!=(const gc_ptr& r) const throw() { return !this->operator==(r); } const bool operator!=(T* p) const throw() { return !this->operator==(p); } T& operator*() const throw() { return *get(); } T* operator->() const throw() { return get(); } operator gc_ptr() const { return get(); } operator T*() const { return get(); } private: #ifdef WANT_THREADS pthread_key_t createkey() { pthread_key_t k; pthread_key_create(&k, NULL); return k; } bool deletekey(pthread_key_t k) { pthread_key_delete(k); return true; } bool set(const gc_ptr& v) { pthread_setspecific(key, (T*)v); return true; } gc_ptr get() const { const gc_ptr v = static_cast(pthread_getspecific(key)); if (v != NULL || !managed) return v; const gc_ptr nv = cl(); pthread_setspecific(key, nv); return nv; } #else gc_ptr > createkey() { return new (gc_new >()) gc_ptr(); } bool deletekey(unused gc_ptr > k) { return true; } bool set(const gc_ptr& v) { *key = v; return true; } gc_ptr get() const { if (*key != NULL || !managed) return *key; *key = cl(); return *key; } #endif #ifdef WANT_THREADS pthread_key_t key; #else gc_ptr >key; #endif bool owner; lambda()> cl; bool managed; }; } #endif /* tuscany_parallel_hpp */